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GENERAL INTRODUCTION 

When one plans the synthesis of a natural product or class of 

natural products many considerations come to mind. Typically, one tries 

to design a synthesis which is esthetically pleasing, yet attains the 

target molecule in as few operations as possible. Thus, one can avoid 

offending either the eye or the budget. 

If the experimenter is blessed with a combination of skill and 

luck, the paper synthesis translates directly into the laboratory. 

When this occurs, one marvels at the predictive powers of theory work

ing in consort with experimentation. Part I describes a synthesis of 

this sort. 

Alternatively, the molecular system will laugh at the paper syn

thesis and defy the investigator at critical points in the synthetic 

scheme. He can then find himself lost in a maze where his best ideas 

become but junkets headed for dead ends. When this occurs, the success

ful synthesis becomes as much a test of character as skill. Part II 

describes a synthesis of this sort. 

Explanation of Thesis Format 

This thesis is written so that each part represents an article in a 

publishable form. For this reason the numbering scheme adopted for the 

figures and tables is independent in each section. 
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PART I: THE SYNTHESIS OF KALAFUNGIN 
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INTRODUCTION 

Kalafungin (1) (1^ and its enantiomer nanaomyan D (2) are part 

of a growing family of naturally occurring fused pyrano-naphtho-

quinone antibiotics. Included in this group are frenolicin (3), the 

griseusins A and B (4) and the nanaomycins A-C (5). 

At the time this work was initiated, no total synthesis of any 

of these interesting natural products had been reported. This manu

script will detail the results of a program which resulted in the 

total synthesis o"' kalafungin and 9-deoxykalafungin (5, 7). 
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HISTORICAL 

In 1968, workers at the Upjohn Company reported the isolation and 

clinical testing of a new antibiotic from Streptomyces tanashiensis 

strain Kala (UC-5063) (1). Antibiotic assay indicated high inhibitory 

activity in vitro against a variety of pathogenic fungi, yeasts, protozoa, 

gram-positive and gram-negative bacteria (lb). 

The new antibiotic was designated as kalafungin and the molecular 

structure established as U by single crystal X-ray diffraction analysis 

(8). The absolute configuration (IR, 3R, 4R) was determined by compari

son of its optical rotary dispersion curve with those of the known 

substances eleutherin (^) and isoeleutherin (2b) (6). 

Omura, et al. have reported the isolation and structure determination 

of nanaomycin D from Streptomyces rosa var. notoensis (2). They found 

that all spectral properties of a chromatographed sample of nanaomycin 

D coincided exactly with those of kalafungin, with the exception that 

lb R = OCH-~ j 
Ic R = M 

R 

the direction of specific rotation of polarized light ([a]-278 

(CH3OH)) was opposite to that reported for kalafungin ([ct]n^^ +159' [a]/^ +159 0 

0 
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(CHClg)). The ORD was also opposite to that reported for kalafungin, 

leading to the conclusion that the two were enantiomers. 

The production of two enantiomers by the genus Streptomyces poses 

interesting biosynthetic problems to which no ready solutions are 

available. By feeding labeled acetic acid to cultures of Streptomyces 

rosa, Tanaka, et al. established the probable biosynthetic route to be 

as shown below (5). 

8 CHgCOgH 
COgEnz 

Although the actual mode of action of the antibiotic is unknown, 

Moore has postulated a bioreductive mechanism which passes through the 

same intermediates hypothesized by Li and Ellison in the transformation 

of 2 to la (9). 

The trapping of intermediate o-quinone methides by biological 

nucleophiles has been postulated as the source of activity of a large 

number of antibiotics and antineoplastic agents, most notably, the 

anthracyclines and mitomycins (10, 11, 12). 
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CO.H 

1 It 

AJ"' 
HO OH CI 

The same authors determined that nanaomycin A is converted 

into nanaomycin D by air oxidation in methanol (2). A similar conversion 

of griseusin B into griseusin A by air oxidation has been reported (4). 

This appears to be the final biosynthetic step in the production of 

both kalafungin and nanaomycin D. 

3 COgH 

Li and Ellison employed this transformation as the final step in 

a synthesis of 1^ (9). Their suggested mechanism accounts for the cis-

stereochemistry at C-3 and C-4, and is detailed on the following page. 

This biosynthetic dilemma, the production of both enantiomers of la 

by the genus Streptomyces, creates a unique situation for the synthetic 
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organic chemist. A racemic total synthesis of furnishes not one, 

but two natural products. 

In the year previous to our report on the total synthesis of 9-

deoxykalafungin (7), one model study (13) and one total synthesis (9) 

of kalafungin appeared in the literature. The two were very similar, 

relying heavily upon a previously published synthesis of eleutherin (14). 

All three studies are linear in strategy, i.e., they begin with a 

substituted naphthoquinone and attach small pieces until they arrive at 

the target molecule. This type of strategy will almost always proceed 

in lower overall yield than a convergent synthesis, one in which large 

portions of the molecule are brought together in one step. 

Initial synthetic studies in the area of naphtho-[2,3-(^ -pyrano 

quinones were initiated by Eisenhuth and Schmid, approximately ten years 
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before the isolation of kalafungin, with the synthesis of the much 

simpler molecules eleutherin and isoeleutherin (14). 

Readily available l-allyloxy-5-methoxy naphthalene (8) was 

transformed by CI ai sen rearrangement and Fremy's salt oxidation into 

2-allyl-5-methoxy-l,4-naphthoquinone (^). 

1) 200°, 2% h 

2) Fremy's salt 
86% 

CH3O CH3O g 0 

Quinone 9 was reduced to the naphthydroquinone and refluxed with 

concentrated (48%) HBr, causing cyclization to dihydrofuran %0. 

0 

1) SnClg 

2) HBr, heat 
55% 

Oxidative dealkylation with ferric chloride afforded quinone TJ, 

which was condensed with acetaldehyde to provide a mixture of eleutherin 

(^) and isoeleutherin (^) in moderate yield. 

0 

Feci 3 
10 5» 

91% 

CH3CHO 

H3PO4 
2a + 2b 

HCOgH 

34% 
CH3O 0 

St. Pyrek, et al. have modified this route in order to synthesize 

9-deoxynanaomycin A methyl ester (13). Thus, 2-allyl-l-naphthol (12) 
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was converted into 2-(3'-carbomethoxy-2'-hydroxypropyl)-1,4-

naphthoquinone (T^) in six steps. 

]) BzCl, KgCOg 

2) CF3CO3H 
3) KCN, HgO-EtOH 

4) NaOH, heat 

5) CHgNg 

6) Fremy's salt 

Unfortunately, treatment of 13 with acetaldehyde, using the 

conditions employed in the synthesis of ^ and ^5 did not proceed in 

the desired fashion. The cyclization was successful only after 

reduction to hydroquinone 14. 

COgCHg 

Zn/HCl J  1 )  

2) air, SIO2 
l3 

ether 

OH 14 

O2CH3 

H2SO4 
The hydroquinone formed in this cyclization is unstable and readily 

oxidizes to naphthoquinone IJ during silica gel chromatography. Although 

it is less favored thermodynamically, it is noteworthy that the cis 

isomer is the predominant (9:1) product. The cis isomer (1^ was 

epimerized to 9-deoxynanaomycin A methyl ester (16) by treatment with 
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concentrated sulfuric acid. This epimerization to the more stable 

trans-1.3-isomer appears to be general for fused pyrano-quinones (7, 

13). (The authors of this work never suggest that they have, in fact, 

synthesized 9-deoxynanaomycin A methyl ester. Only a careful reading 

of their paper uncovered this fact.) 

Shortly after the publication of St. Pyrek's approach, Li and 

Ellison reported the total synthesis of kalafungin by a similar route (9). 

Reduction and methylation of 2-allyl-5-methoxy-l,4-naphthoquinone (U) 

produced the trimethoxy compound 18. The ally! moiety was cleaved to 

an aldehyde and condensed with the tert-butyldimethylsilyl ketene acetal 

of ethyl acetate in the presence of titanium tetrachloride. The product 

of this sequence, although obtained somewhat more efficiently, is 

very similar to intermediate 1^ in the synthesis by St. Pyrek, et al. 

CH,0 

3 17 

1) NagSgO* 

2)(CH3)2S04 
KOH 
70% 18 

oTa 
CHgb CHgi 

1) OsOg 

KCIO3 

2) NalO^ 

80% 

OSit-BuMe 

CHO ^OEt COJEt 

CH.O OCH 

Intermediate 20 was converted to naphthydroquinone ^ by oxida

tive demethylation and reduction. In situ condensation with 
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acetaldehyde and silver oxide oxidation provided quinone The rela

tive stereochemistry between carbons 1 and 3 was assigned the cis con-

figuration based on NMR comparison with spectra of eleutherin (^) 

and isoeleutherin (2b). 

OIO 20 
2) Zn/HCl 

CH,0 

0 

CH-CHO Ag.O 
= > —=—^ 

HCl 51% 

22 ^"3 

Treatment of ^ with concentrated sulfuric acid epimerized C-1 to 

a 2:1 mixture of nanaomycin A ethyl ester and These were then 

separated by fractional recrystallization. The ester was hydrolyzed 

with concentrated hydrochloric acid to afford racemic nanaomycin A. 

Surprisingly, no epimerization occurred at C-1. Air oxidation in 

methanol provided racemic nanaomycin D (2, 5). 
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RESULTS AND DISCUSSION 

Previous work from our laboratory demonstrated the facile conjugate 

additions of butenolide anions to unsaturated carbonyl compounds (15). 

The adduct derived from the addition of the anion of angelica lactone 

to 1,4-benzoquinone was of special interest. Thus, an attractive route 

0 HO 

to kalafungin and related compounds would be the addition of a 

butenolide anion (^) to a properly substituted quinone. A strategy 

of this type would allow for the assemblage of all of the carbons of the 

target molecule in a single step. Unfortunately, all attempts to effect 
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this transformation were without success, leading only to intractible 

materials. While searching the literature for somewhat milder 

approaches to compound 25, we found, much to our delight, that furans 

underwent an "abnormal Diels-Alder reaction" with acylquinones (16). 

Furan, 2-methyl furan and 3,4-dimethoxyfuran were induced to react 

with 2-acetyl-l,4-naphthoquinone (17), although conditions were harsh 

and yields were low. 

The authors postulated two possible mechanisms to explain their 

results. Mechanism A involved the nucleophilic addition of an 

electron rich furan to an electron deficient quinone. In mechanism 

B, it was postulated that the initial step was a Diels-Alder reaction. 

(A) 

0 Q OH 

H+ 
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We reasoned that if mechanism A was correct, the use of a more 

electron rich furan, such as a 2-alkoxy furan, would accelerate the 

rate of reaction. In fact, addition of 2-tert-butoxyfuran (^) (18) 

or 2- tert-bu ty 1 d i methyl s i 1 yoxy furan (^) to a 0 °C toluene solution 

of 2-acetyl-l ,4-naphthoquinone (^) resulted in instantaneous formation 

of Michael adducts 30a and Jb, which were readily tautomerized to the 

respective hydroquinones ^ and b. Highest yields were obtained when 

the reaction was conducted at -78 °C and allowed to warm slowly to 

ambient temperature. 

0 0 

29 0 
2^ R = ;t-Bu 

28b R = t-BuMe.Si 

toluene 

OH 0 

acid or 
b > 

base 

Slg, Jb OH 0 

OH 0 

0 or -78 
0 

30a, b 

Although could not be methylated with potassium carbonate and 

dimethyl sulfate without loss of the silyl protecting group, 3^ under

went methylation readily. In practice, 3^ and ^ were not isolated 

and the transformation of 29 to ^ was conducted without purification 

of intermediates. 
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CH-0 0 

28a + 29 =?• r 1 
M _ ' KgCO, 

62% 

0-t-Bu 

To define the generality of this reaction, we attempted the addi

tion of to unactivated quinones. Under no conditions, including 

Lewis acid catalysis, could 28a be induced to react with 1,4-naphtho-

quinone, juglone, or benzoquinone (19). 

Lithium aluminum hydride reduction of 32 afforded alcohol in 

over 95% yield. Attempts to deprotect ^ with trimethylsilyl iodide 

(20) yielded no recognizable products, but treatment of ^ with 1 

equivalent of trifluoroacetic acid in methylene chloride afforded a 

mixture of '^-unsaturated butenolide 34 (readily identified by its 
••1 * 

characteristic infrared absorption at 1800 cm" ) and cyclized product 

^ in moderate yield. Butenolide M could be isomerized to the 

butenolide by treatment with an equivalent of diazabicyclononane (DSN) 

in benzene. The intermediate A°*®-butenolide then cyclized in situ 

Experimentally, an inseparable mixture of C-1 epimers (appro

ximately 2.7:1 by NMR), could be prepared in 32% yield from ^ without 

purification of intermediates. 

Oxidative demethylation employing Snyder and Rappoport's procedure 

(21) afforded 9-deoxykalafungin (Ic) as a single isomer by proton and 

to 35. 
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LiAlH ether 

CH3O OH 

CFgCOgH 

CHgClg 

0-t-Bu 

Ago 

HNO 3 

DBN, benzene t 

carbon NMR, in 95% yield. Apparently, the mixture of epimers 

produced in the initial oxidation undergoes facile epimerization 

at C-1 to the thermodynamically more stable natural configuration 

in the presence of 6 N HNOg. Thus, we were able to obtain racemic 9-

deoxykalafungin, epimerically pure, without the unfortunate need to 

separate diastereomers experienced by Li and Ellison, in 17% overall 

yield from 2-acetyl-l,4-naphthoquinone. 

Clinical testing of 9-deoxykalafungin by the Upjohn Company indicated 

activity very similar to that of kalafungin. (See Appendix for data of 

clinical testing.) 

The extension of our route to kalafungin required an effective 

synthesis of 2-acetyl-8-methoxy-l ,4-naphthoquinone (^). One plausible 

strategy was the conjugate addition-annelation of substituted phthalides 

with unsaturated carbonyl compounds (22). 
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CHgO 0 

2) oxidation 

36a X = SPh 
535 X = CN 

Z = COCH3 

37b Z = COgEt 

To initiate this strategy, 7-methoxy-(3-thiophenyl )-phthalide (^) 

was prepared by quenching the anion of 7-methoxyphthalide (23) with 

diphenyldisulfide. We then generated the anion of 36a (IDA-THF-HMPA), 

CH3O 0 

o IDA, THF 

•78", PhSSPh 

50-60% 36a S0 

added ethyl acrylate or methyl vinyl ketone at -78 C, and all©wed the 

solution to warm to ambient temperature. This resulted in the formation 

of adducts 38 and 39 (24). 

36a 

Z 

Z 

1) LDA-HMPA 

C0CH3 

COgEt 

38a 30% 

38b 50% 

0S 
^ 60% 

39b — 

Presumably, ^ arises from the anion of ^a, yet attempts to 

effect the transformation of 39| to 3^ resulted only in recovery of 
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starting material. Variation of reaction parameters either lowered 

the yield of or had no effect (25). Treatment of ^ and ^with 

silver oxide led quantitatively to quinones ^ andJb. 

Having secured a workable route to the desired quinones and b), 

each was treated with 2-tert-butoxyfuran. Not surprisingly, the sub

stitution of an electron donating substituent to the quinone nucleus 

resulted in a decrease in reactivity (16). Although 2-carboethoxy 

quinone (.^) proved to be inert, even under forcing conditions (boil

ing toluene or Lewis acid catalysis), 2-acetyl quinone (^) reacted 

slowly to yield an adduct, which could be methylated to afford compound 

40 in 59% yield. 

CH3O HO 0 

-t-Bu 

CH,0 OCH, 0 

(^^3)2^^4 
59% 

49 O-t-Bu 

As expected, hydride reduction of ^ proceeded without incident, 

providing alcohol ^ in 80% yield. To our surprise, the 
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deprotection-cyclization sequence, which proceeded in only modest yield 

in the model system, afforded cyclized product 42 in excellent yield. 

LiAlH 

benzene 
94% 

Compound a mixture of C-1 epimers, when subjected to the oxidation 

protocol of Snyder and Rappoport, afforded 9-0-methyll<alafungin (lb) 

as a single diastereomer (mp 203-210 °C, lit. 205-215 °C) (lb). This 

was determined by proton and carbon NfIR (21). All other spectral data 

coincided with published spectra. Treatment of lb with boron tri

chloride (26) at low temperature furnished synthetic (+)-kalafungin 

Ago BCU 
^ ^ lb la 

6 N HNO3 ~ CHgClg 
- 78 °C 

(Ij) as the sole product. All spectral data for synthetic la were in 

accord with published material (la). 
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EXPERIMENTAL 

General 

Diethyl ether and THF were distilled from lithium aluminum hydride. 

All organic extracts were dried over NagSO^. Melting points were 

determined on a Fisher-Johns melting point apparatus and are uncorrected. 

Infrared spectra were determined on a Beckman IR-4250 spectrometer. 

Nuclear magnetic resonance spectra were determined on a Varian EM-360 

instrument in CDClg with absorptions recorded in ppm downfield from 

internal Me^Si. Ultraviolet spectra were recorded using a Gary Model 14 

spectrometer. High resolution mass spectra were recorded on an AEI 

MS-902 high resolution mass spectrometer. Elemental analyses were 

performed by Galbraith Laboratories, Inc. 

2-tert-Butoxyfuran (^) 

The literature procedure (18) was manipulatively awkward, affording 

^ in low to moderate yield at best. Using a modified procedure, 

detailed below, we have been able to generate large quantities of 2^, 

in yields significantly higher than were possible employing the 

literature procedure (27). 

Fifty-seven milliliters (0.125 mole) of a 2.2 M commercial hexane 

solution of iv-butyl lithium was added dropwise to a solution of 

furan (13.6 g, 0.15 mole) in anhyd ether (75 mL) cooled to 0 °C under dry 

nitrogen. The solution was warmed to ambient temperature over 1 h to 

yield a white suspension of 2-lithiofuran. After it was cooled to 0 °C, 
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the slurry was transferred under positive nitrogen pressure, through 

tygon tubing having glass pipettes at each end, to a suspension of 

MgBrg (prepared from 3.9 g of magnesium turnings and 26.3 g of 1,2-

dibromoethane) in anhyd THF (40 mL). To the resultant red-brown solu

tion, tert-butyl perbenzoate (19.4 g, 0.10 mole) was added over 

approximately 30 min. Stirring was continued at 0 °C for 1 h. Then 

saturated aqueous bicarbonate solution (50 mL) was added with vigorous 

stirring. A precipitate formed, which was suction filtered (Celite), 

providing a two phase system. The layers were separated and the 

aqueous layer was extracted with ether (2 x 50 mL). The combined ether 

layers were washed with brine and dried (NagSO^). The dried solution 

was filtered and distilled at 1 atmosphere pressure. The residue was 

distilled at reduced pressure, providing 6.38 g (45%) of 28a as a color

less liquid (bp 60-64 °C/55 mm Hg, lit. (18) 44 °C/16 mm Hg). 

2-tert-Butyldimethylsilyloxy Furan (^) 

jvButyl lithium (5.31 mL of a commercial 2,45 M hexane solution) 

was added to a 1.0 M tetrahydrofuran (THF) solution of diisopropyl 

amine (2.0 mL, 14.3 moles) cooled to -78 °C under dry nitrogen. After 

5 min, hexamethyl phosphoramide (HMPA, 2.26 mL, 13 mmoles) was added 

and stirring continued until a white suspension had formed (approximately 

15-30 min). When formation of the LDA-HMPA complex was complete, 

A^'^-butenolide (1.0 g, 12 mmoles) was added as a 1.0 M THF solution. 

The resulting solution v/as stirred 20 min and tert-butyldimethylchloro-

silane (2.0 g, 13.2 imoles) in THF (13 mL) was added rapidly. Stirring 
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was continued for 10 min at -78 °C, followed by 1 h at ambient 

temperature. The light-yellow suspension was poured into hexanes 

(200 mL) and washed with water (50 mL) and brine (25 mL). The organic 

layer was dried, filtered, and concentrated. The crude yellow oil 

was filtered through silica gel (40 g, 10:1 hexanes-ether) to provide 

1.97 g (84%) of 28b as a colorless oil: IR (film) 2960, 2930, 2860, 

1620, 1520, 1255, 950, 850 cm"S NMR (CDCI3) 6 0.25 (s, 6 H), 1.0 (s, 

9 H), 5.17 (dd, J =3 Hz, 0.5 Hz. 1 H), 6.30 (m, 1 H), 5.88 (m, 1 H). 

1,4-Dimethoxy-2-acetyl-3-(5-tert-butoxy-2-furyl)naphthalene (32) 

To a 1.0 M toluene solution of 2-acetyl-l,4-naphthoquinone (29) 

(340 mg, 1.7 mmoles) at -78 °C under nitrogen was added via syringe a 

1.0 M toluene solution of 2-tert-butoxyfuran (250 mg, 1.8 mmoles). 

The resulting solution was allowed to warm slowly to room temperature. 

The solvent was removed under reduced pressure and replaced with 15 mL 

of anhydrous acetone. Potassium carbonate (730 mg, 5.3 mmoles) and 

dimethyl sulfate (500 mg, 4.0 mmoles) were added, and the solution was 

heated at reflux for 8 h. The cooled solution was filtered and the 

filtrate was concentrated. Silica gel chromatography (10:1 hexane-

ether) yielded 390 mg (62%) of a bright red oil: IR (film) 1610, 1387, 

1145 cm"T; NMR (CDCI3) 5 1.42 (s, 9 H), 2.53 (s, 3 H), 3.80 (s, 3 H), 

3.94 (s, 3 H), 5.63 (d, J = 3 Hz, 1 H), 6.85 (d, J = 3 Hz, 1 H), 7.56 

(m, 2 H), 8.15 (m, 2 H). High resolution mass spectrum for C22H24O5 

required m/e^ 368.16238; found m/e^ 368.16171. 
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1,4-Dimethoxy-2- ( g-h.ydroxyethyl ) -3- ( 5-tert-butoxy-2-fury1 )-

naphthalene (^) 

To a stirred solution of lithium aluminum hydride (20 mg, 0.50 

mmole) in ether (1.0 mL) at -10 °C under Ng was added ^ (390 mg, 1.06 

mmoles) in 1.0 mL of ether. The solution was stirred for 30 min at -10 

°C and then quenched by slow addition of 5 drops of water, 5 drops of 

1 N NaOH, and then 1 mL of HgO. After stirring for a further 5 min, the 

solution was filtered, diluted with ether, and dried. Filtration 

and evaporation of the solvent yielded 350 mg (.96%) of a pale yellow 

oil: IR (film) 3450, 2980, 2930, 2850, 775 cm"^ NMR (CDCI3) 6 1.41 

(s, 9 H), 1.56 (d, J = 7 Hz, 3 H), 3.67 (s, 3 H), 4.06 (s, 3 H), 4.18 

(br s, 1 H), 4.35 (q, J = 7 Hz, 1 H), 5.64 (d, J = 3 Hz, 1 H), 6.43 (d, 

^ = 3 Hz, 1 H), 7.52 (m, 2 H), 8.13 (m, 2 H). High resolution mass 

spectrum for rsAuired m/e^ 370.17803; found m/£ 370.17909. 

2-0xo-5-methyl-6,ll-dimethoxy-2H-furo[3,2-b)naphtho[2,3-dJpyran (^) 

To a 0.5 M methylene chloride solution of ^ (310 mg, 0,84 mmole) 

at 0 °C under Ng was added 1 equivalent of trifluoroacetic acid. The 

ice bath was removed and the solution stirred for 30 min. Benzene 

was added (5 mL), and the solvents were removed at reduced pressure 

(repeated three times). The material remaining was dissolved in 4 mL 

of dry benzene, and 1 equivalent of 1,5-diazabicyclo{4.3.o]non-5-ene was 

added. After stirring for 30 min at room temperature, the solution was 

diluted with 20 mL of 1:1 benzene-ether and washed with 5 mL of 0.5 M 

HCl and then brine. The organic layer was dried, filtered, and the 
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solvent was removed at reduced pressure. Silica gel chromatography 

(hexane-EtOAc) yielded 90 mg (35%), as colorless crystals: IR 

(major) 1780 cm"^; NMR (CDCI3) (major) s 1.50 (d, ^ = 7 Hz, 3 H), 2.57 

(d, J = 18 Hz, 1 H), 3.02 (dd, J = 18, 4.5 Hz, 1 H), 3.92 (s, 3 H), 

4.08 (s, 3 H), 4.72 (dt, J = 4.5, 3.0 Hz, 1 H), 5.37 (q, J = 7 Hz, 1 H), 

5.58 (d, J = 3 Hz, 1 H), 7.54 (m, 2 H), 8.05 (m, 2 H). Anal, calcd 

for CigH^gOg: C, 68.78; H, 5.77. Found: C, 68.57; H, 5.79. 
X 

9-Deoxykalafungin (Ic) 

To ^ (68 mg, 0.216 mmole) and argenic oxide (110 mg, 0.9 mmole) 

in 2.0 mL of THF was added 0.2 mL of 6 N HNG^. After the disappearance 

of the argentic oxide (approximately 5 min), the reaction was 

terminated by addition of 10 mL of 4:1 CHCI2-H2O. The mixture was 

diluted with CHClg and washed twice with water and once with brine. 

The organic layer was dried, filtered, and the solvent was removed at 

reduced pressure. Recrystallization from ether yielded 58 mg (95%) 

of orange crystals: mp 181-183 °C; IR (Nujol) 1780, 1660 cm"^; NMR 

(CDCI3) 6 1.56 (d, J = 7 Hz, 3 H), 2.65 (d, J = 18 Hz, 1 H), 3.10 (dd, 

J = 18, 4.5 Hz, 1 H), 4.78 (dt, J = 4.5, 3 Hz, 1 H), 5.13 (q, J = 7 Hz, 

1 H), 5.39 (d, J = 3 Hz, 1 H), 7.87 (m, 2 H), 8.22 (m, 2 H); UV (CHCI3) 

241, 248, 255, 267 sh, 345 nm. Anal, calcd for C^gH^gOg: C, 67.40; 

H, 4.26. Found: C, 67.40; H, 4.34. 
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7-Methoxy-(3-thiophenyl )-phthal 1de (^) 

To a solution of LDA-HMPA complex (from 7.4 mmoles of diisopropyl-

amine, 6.7 mmoles of ji-butyl lithium and 6.7 mmoles of HMPA) in THF 

(7 mL), cooled to -78 °C under nitrogen, was added 7-methoxy phthalide 

in THF (12 mL). The resultant orange solution was stirred 15 min 

and diphenyl disulfide in 7 mL THF was added all at once. The cooling 

bath was removed and replaced with an ice bath. Stirring was continued 

at 0 °C for 30 min. Then the reaction was quenched by slow addition of 

1 N HCl with vigorous stirring. Water (10 mL) was added and the whole 

extracted with ether (3 x 50 mL). The combined ether layers were 

washed with 1 N HCl (15 mL), 1 N NaOH (2 x 10 mL), water (10 mL), and 

brine. The dried (NagSO^) solution was filtered, concentrated, and 

chromatographed, affording 0.81 g (2.98 mmoles, 49%) of ^ as a light-

yellow solid. Recrystallization from benzene afforded off-white 

crystals (mp 113-116 °C): IR (KBr) 1770, 1615, 1595 cm"S NMR (CDCI3) 

6 4.05 (s, 3 H), 6.70 (s, 1 H), 7.0-8.0 (m, 8 H). 

8-Methoxy-l ,4-dihydroxy-2-naphthoic Acid, Ethyl Ester (^) 

A solution of 3^ (0.27 g, 1.0 mmole) in anhyd THF (2.0 mL) was 

added dropwise to a suspension of LDA-HMPA complex (1.1 mmole) in 1 

mL of THF cooled to -78 °C under nitrogen. Stirring was continued for 

15 min and ethyl acrylate (0.10 g, 1.0 mmole) was then added as a 1 M 

THF solution. The mixture was allowed to warm slowly to ambient 

temperature over approximately 2.5 h, then quenched by addition of 

2.5 mL of 1 N HCl. The whole was extracted with ether (2 x 50 mL) 
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and the combined ether layers were washed with water (10 mL) and brine 

(10 mL). The dried solution was filtered and concentrated. Silica 

gel chromatography (hexane-ether) provided 140 mg (0.53 mmole, 53%) 

of ^ as light-orange crystals: mp 143-5 °C (dec) from ether; IR 

(Nujol) 3500, 1670 cm"''; NMR (CDCI3) 6 1.40 (t, J = 7 Hz, 3 H), 4.13 

(s, 3 H), 4.46 (q, J = 7 Hz, 2 H), 6.9-8.0 (m, 4 H), 12.24 (s, 1 H). 

High resolution mass spectrum for C^^H^^Og required 262.08411; 

found m/e^ 262.08252. 

2-Acetyl-8-methoxy-l,4-dihydroxynaphthalene (38a) 

7-Methoxy-(3-thiophenyl)-phthalide was reacted with methyl vinyl 

ketone, in the manner described above, to provide ^ (Z = COCHg, 30%): 

IR (Nujol) 3500, 1640, 1600 cm"^; NMR (CDCI3) 6 2.57 (s, 3 H), 4.14 

(s, 3 H), 6.9-7.8 (m, 4 H), 13.60 (s, 1 H), and 3% (Z = COCH3, 60%): 

IR 1760, 1715 cm'T; NMR (CDCI3) 6 2.12 (s, 3 H), 2.55 (m, 4 H), 3.97 

(s, 3 H), 6.8-7.9 (m, 8 H). 

Silver(I) Oxide Oxidation of Naphthydroquinones (^ and^) 

The requisite hydroquinone, as a 0.2 M ether solution, was stirred 

with 1.5 equivalents of silver(I) oxide for 3 h. The suspension was 

filtered and concentrated to afford the qui nones in quantitative yield. 

37a: IR (CHCI3) 1705, 1670, 1595, 1295, 1233 cm'^ NMR (CDCI3) 

<5 2.67 (s, 3 H), 4.12 (s, 3 H), 7.12 (s, 1 H), 7.3-7.9 (m, 3 H). 
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ZTb: IR (Nujol) 1735, 1670, 1585, 1280 cm"^ NMR (CDClg) 6 1.36 

(t, J - 7 Hz, 3 H), 4.10 (s, 3 H), 4.45 (q, J = 7 Hz, 2 H), 7.18 (s, 

1 H), 7.3-7.9 (m, 3 H); mp 100-102 °C, lit. (28) 102-3 °C. 

1.4,8-Trimethox.y-2-acet.yl-3-(5-tert-butoxy-2-furyl)naphthalene 

A 1.0 M toluene solution of 2-tert-butox.yfuran (0.14 g, 1.0 mmole) 

was added to a solution of 2-acetyl-8-methoxy-l ,4-naphthoquinone (^) 

in 1.0 tnL of toluene, at 0 °C under nitrogen. The resulting light 

orange solution was allowed to warm to room temperature, where it was 

stirred 24 h. The solvent was removed at reduced pressure and replaced 

with 5 ml of anhyd acetone. Potassium carbonate (0.55 g, 4 mmoles) and 

dimethyl sulfate (0.29 mL, 3.0 mmoles) were added, and the whole was 

refluxed for 8 h. The cooled solution was filtered and concentrated. 

Silica gel chromatography (10:1 hexane-ether) yielded 0.224 g (0.563 

mmoles, 59%) of 40 as a light yellow oil: IR (film) 2980, 2940, 2850, 

1710, 1610 cm'T; NMR (CDClg) 6 1.48 (s, 9 H), 2.67 (s, 3 H), 3.93 (s, 

3 H), 3.96 (s, 3 H), 4.17 (s, 3 H), 5.78 (d, J = 3 Hz, 1 H), 7.09 (d, 

2 = 3 Hz, 1 H), 7.1-8.1 (m, 3 H). High resolution mass spectrum for 

^23^26^6 rsAuired rn/£ 398.17295; found m/e^ 398.17565. 

1,4,8-Trimethoxy-2-(a-hydroxyethyl)-3-(5-tert-butoxy-2-

furyl)-naphthalene (^) 

To a stirred solution of lithium aluminum hydride (.15 mg, 0,40 

mmole) in ether (1.0 mL), cooled to -10 °C under nitrogen, was added 

40 (224 mg, 0.563 mmoles) in 1.0 mL of ether. The solution was stirred 
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for 30 min at -10 °C and then quenched by addition of 1 drop of 

water, 1 drop of 15% NaOH, and 3 drops of water. After 10 min, the 

solution was filtered to remove precipitated aluminum salts. The 

filtrate was dried and concentrated to provide 181 mg (0.45 mmoles, 

80%) of 41 as a colorless oil: IR (film) 3490, 2980, 2940, 1615 cm"^ 

NMR (CDCI3) 1.45 (s, 9 H), 1.63 (d, J = 7 Hz, 3 H), 3.72 (s, 3 H), 

4.02 (s, 3 H), 4J0 (s, 3 H), 4.30 (q, J = 7 Hz, 1 H), 5.2 (br s, 1 H), 

5.70 (d, J = 3 Hz, 1 H), 6.48 (d, J = 3 Hz, 1 H), 6.9-8.0 (m, 3 H). 

High resolution mass spectrum for GggHggOg required m/e^ 400.18860; 

found m/£ 400.18855. 

9-^-Methyl Kalafungin (1^) 

Trifluoroacetic acid (2 drops) was added to a solution of ^ (120 mg, 

0.30 mmoles) in dichloromethane (1.0 ml), cooled to 0 °C under nitrogen. 

The cooling bath was removed and the red solution stirred 1 h at ambient 

temperature. Toluene (10 mL) was added and the solvents were removed 

at reduced pressure (repeated three times). The residue was dissolved 

in benzene (3 mL) and then cooled to 5 °C. 1,5-Diazabicyclo[4.3.0]non-

ene (2 drops) was added and stirring continued for 10 min. Ether (10 

mL) was added and the solution transferred to a separatory funnel, 

where it was washed with ice cold 0.25 N HCl (2 x 5 mL) and brine (10 

mL). The dried (NagSO^) solution was filtered and concentrated to afford 

j2 (95 mg) as a yellow oil. 

Crude (95 mg) was dissolved in THF (3 mL) and argentic oxide 

(150 mg, 1.15 mmoles) was added, followed by 0.3 mL of 6 N HNO^. 
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Stirring was continued for 10 min. Then 4:1 CHClg-HgO (10 mL) was 

added. After transfer to a separatory funnel, it was extracted 

with CHClg (2 X 50 mL) and the organic layer was then washed with 

water (2x5 mL) and brine (5 mL). The dried solution was filtered and 

concentrated. The residue was chromatographed (silica gel, 1:1 hexane-

ethyl acetate) to afford 42 mg of lb as an orange solid; mp 203-210 °C 

(dec) from acetone; (1:1 hexane-ethyl acetate) = 0.15; IR (Nujol) 

1780, 1665 cm'T; 90 MHz NMR (CDClg) S 1.55 (d, J = 7 Hz, 3 H), 6 2.63 

(d, J = 18 Hz, 1 H), 2.98 (dd, J = 18, 5 Hz, 1 H), 4.02 (s, 3 H), 4.68 

(dt, J = 5, 3 Hz, 1 H), 5.05 (q, J = 7 Hz, 1 H), 5.27 (d, J = 3 Hz, 1 H), 

7.2-8.0 (m, 3 H); 90 MHz C-13 NMR (CDCI3) 6 18.636, 36.947, 56.504, 

66.417, 66.905, 68.909, 118.208, 119.563, 132.510, 133.865, 135.598, 

151.038, 160.139, 174.062, 182.513, 203.371; UV (CH3OH) 211, 253 nm. 

High resolution mass spectrum for C^^H^^Og required m/e 314.07904; found 

m/e 314.07856. 

Kalafungin (la) 

Excess boron trichloride was added to 9-0-methyl kalafungin (1^) 

in 1 mL of anhyd dichloromethane cooled to -78 °C under nitrogen. When 

addition was complete, the cooling bath (Dry Ice-acetone) was removed 

and the bright purple solution was allowed to warm to ambient tempera

ture. Ten minutes after removing the cooling bath, water was added 

with vigorous stirring. The yellow-orange solution was diluted with 

dichloromethane (50 mL) and washed with water (2 x 10 mL) and brine 
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(10 mL). The dried solution was filtered and concentrated to provide 

U as light orange crystals. 

Attempted Additions of 2-tert-Butoxy Furan to 

8-Methoxy-2-carboethoxy-l,4-naphthoquinone (37b) 

Addition of ^ (70 mg, 0.50 mmoles) in toluene (1.0 mL) to a 

room temperature solution of followed by prolonged stirring at 

ambient temperature, resulted in no adduct formation by thin-layer 

chromatography (TLC). The solution Ivas heated to reflux for 5 h. No 

reaction was observed by TLC or NMR (28). 

Freshly fused zinc chloride (60 mg, 0.044 mmoles) was added to a 

room temperature solution of 2^ (140 mg, 1.0 mmoles) and (120 

mg, 0.50 mmoles) in 2 mL of toluene. Stirring was continued for 12 h 

at ambient temperature. Ether was added and the whole was washed with 

water (10 mL) and brine (10 mL). Filtration and concentration of the 

dried solution afforded no recognizable product by NMR. 

Attempted Additions of % to Unactivated Quinones 

1,4-Naphthoquinone (0.158 g, 1.0 mmole) and ^ (180 mg, 1.3 

mmoles) in benzene (10 mL) were stirred at ambient temperature for 24 h. 

Since no reaction was evident by TLC, the solution was refluxed for 12 h. 

The cooled solution was concentrated to afford a mixture of recovered 

1,4-naphthoquinone and A^'^-butenolide. The butenolide is derived from 

28a by a thermal or acid catalyzed decomposition. Treatment of 
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benzoquinone, juglone» 1,4-benzoquinone-bis-tosy1 imine, or bi's-chloro-

imine with ^ yielded similar results. 

Aluminum chloride (133 mg, 1.0 mmole) was added to a solution of 

^ and 1,4-naphthoquinone in benzene (2 ml) at 0 °C. The resulting 

solution was stirred for 15 min and then poured into ice water. The 

mixture was extracted with ether (2 x 50 mL). Filtration and concen

tration of the dried organic layer provided recovered 1,4-naphtho-

quinone. No trace of ^ was found. A similar reaction, employing 

ZnClg as catalyst, also resulted in the destruction of 28a. 

Attempted Addition of A^'^-Butenolide Anion (^) to 1,4-Naphthoquinone 

To a solution of butenolide anion ^ (generated from 168 mg, 2 

mmoles of A"'^-butenolide and 2.2 mmoles of LDA-HMPA complex) in THF 

(4 mL) cooled to -78 °C under nitrogen, was added a 1 M THF solution 

of 1,4-naphthoquinone (316 mg, 2 mmoles). A dark blue-green slurry 

resulted, which was stirred 15 min before 2.5 mmoles of acetic acid 

was added. The solution was diluted with ether and was washed with 

water (10 mL) and brine (10 mL). Filtration and concentration of the 

dried solution afforded only intractible material. 
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APPENDIX 

Report on clinical testing by the Upjohn Company 

As per your request, we have determined the MIC s of deoxykalafungin 
{U-57266) and kalafungin (U-19718) vs. seventeen pathogenic fungi. 
The results are as follows: 

Minimum Inhibitory Concentration (pg/mL) 

Test Organisms Kalafungin Deoxykalafungin 

Nocardia asteroides UC 2052 3.9 3.9 

Blastomyces dermatitidis UC 1466 <1.0 <1.0 

Geotrichum sp. UC 1207 3.9 3.9 

Hormodendrum compactum UC 1222 3.9 2.0 

Phialophora verrucosa UC 1807 <1.0 <0.5 

Cryptococcus neoformans UC 4869 2.0 2.0 

Cryptococcus neoformans UC 1139 <1.0 1.0 

Sporotrichum schenckii UC 1364 15.6 7.8 

Monosporium apiospermum UC 1248 <_1.0 1.0 

Candida albicans UC 7163 7.8 7.8 

Candida albicans UC 7164 7.8 15.6 

Microsporum canis UC 1395 7.8 7.8 

Trichophyton rubrum UC 1458 <1,0 <0.5 

Trichophyton violaceum UC 1459 2.0 <0.5 

Trichophyton asteroides UC 4775 2.0 1.0 

Trichophyton mentaqrophytes UC 4797 3.9 2.0 

Trichophyton mentagrophytes UC 4860 2.0 1.0 

The activity of deoxykalafungin was nearly identical to that of 
kalafuncin (+ 1 two-fold dilution is within the error of the test). 
Both compounds were potent inhibitors of a wide variety of pathogenic 
fungi. 

Notebook Reference XII-CL: 202 
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PART II: THE PREPARATION OF THE TRICHOTHECENE SKELETON 
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INTRODUCTION 

The remarkable biological activity of certain members of the 

trichothecene family of terpene antibiotics has stimulated considerable 

interest in these natural products (1). 

This manuscript will detail the results of a program which resulted 

in the first total synthesis of the trichothecene skeleton containing 

oxygen functionality at carbons 15 and 3. , 



www.manaraa.com

38 

HISTORICAL 

Verrucarol (^) and diacetoxyscirpenol (anguidin, are members 

of the trichothecene class of naturally occurring fungal sesquiterpenes 

(1). Other members of this class include the macrocyclic verrucarins 

and roridins, as well as the less complex trichodermol (%). The 

structures of a limited number of trichothecenes are presented below. 

H 

1 /V 

a R, = R« = H, verrucarol 
• ^ 1 2  

Jb R^ = Rg = Ac, diacetoxyverrucarol (2) 

H ° t £ s 
c R,,R, = -COC-CCH„CH,OCCH= CHCH= CHC-
'V 1 2 I I 2 6 

H CH3 

A 9 ^ ^ « 
d R^.Rg = -COCH—CCH2CH20CCH= CHCH= CHC-

CH3 

verrucarin A (3, 4) 

verrucarin B (3, 5) 
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X "l>"2 = 

% *1'R2 = 

S i ̂  S 
-COCH= CCHgCHgOCCH^ CHCH=CHC-

CH3 
2' 

OH 0 t c 0 
II = II -  - II 

-COC-CCHoCH,OCCH= CHCH= CHC-
I 2 2 

CH3 

OH H c 0 

-COC-CCH,CH,OCHCH=CHCH=CHC-
I I 2 2 I 

H CH. CH(OH)CH, 

verrucarin J (3, 6) 

2'-dehydroverrucarin A (7) 

roridin A (3, 8a) 

b R,.R; = 
/\ c 0 

-COCH- CCH2CH20CHCH= CHCH= CHC-

CH, tH(OH)CH. 

roridin D (3, 8b) 

a R = 

b R = 

Ac, trichodermin (9) 

H, trichodermol (roridin C) (3) 

^ «1 

b Rl 

% h 

OH, Rg = OAc, Rg = H,H 

OAc, Rg = H, Rg = H, H 

H, Rg = OCOCH^CHCHg, R3 = 0 

diacetoxyscirpenol (10, lla-d) 

calonectrin (lie) 

trichothecin (11f) 
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The verrucarins and roridins are secondary metabolites of the 

soil fungi Myrothecium verrucaria and flyrotheciurn roridum (la-c). 

Verrucarol, although not actually produced by the organisms, is the 

sesquiterpene alcohol derived from basic hydrolysis of the macrocyclic 

verrucarins and roridins, with the exception of roridin C (la). 

Initial investigation into the structure of verrucarol by 

Gutzwiller and Tamm led to their proposal of structure J5, based on 

ultraviolet, infrared, H^-NMR, and combustion analysis (12). 

The correct structure for verrucarol was established only after 

chemical correlation with trichodermol (^) (13). The structure of 

trichodermol had been previously determined by X-ray analysis of the 

£-bromobenzoate (14). The structure of diacetoxyscirpenol was established 

by correlation with a degradation product of verrucarol (11a, b). 

Ironically, structure ^ corresponds to the apotrichothecene skeleton, 

which is produced by acid catalyzed rearrangement of the parent system 

(13). The elucidation of the biogenesis of the trichothecene skeleton 

has elicited a plethora of activity (Id, 15-19). The currently accepted 

biosynthetic route is shown below (Ic, d). 

The incorporation of geranyl pyrophosphate (^) and trichodiene (IJ,) 

into the trichothecene skeleton was confirmed by feeding experiments 

with labeled 2 and 11 (16). Earlier proposals had postulated y-bisabolene 

H H 

5 
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: Enzyme 

PP=pyrophosphate 
nz 

0 
HO 

3 ]Z. trichodiol 
11 

^ CH3 CH3 

(8) as a biosynthetic intermediate (17, 18), but more recent experiments 

resulted in low incorporations and extensive degradation when and 

X-bisabolene were administered to culture of Trichothecium roseum (16, 

19). These new studies make the intervention of a bisabolene intermediate 

unlikely (Id). 

The stimulus for the intense interest in the trichothecenes stems 

from the intense biological activity of these compounds. This subject 

has been extensively reviewed (la) and will only be highlighted here. 
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Verrucarin A (^) is the only trichothecene known to possess anti

bacterial activity (3c). Most trichothecenes show antifungal nronerties. 

Of those tested, verrucarin A, diacetoxyscirnenol and diacetylverrucarol 

were the most active (20). Trichothecin (^) was found to be an active 

inhibitor of infection of bean and tobacco plants by plant viruses (21). 

The most significant biological property of the trichothecenes is their 

potent cytostatic activity. Many are under active investigation as anti

cancer agents. 

Harri, et al. examined the verrucarins A and B and the roridins A 

and C for cytostatic activity against mouse tumor cells (3a). All were 

found to be extremely effective. Verrucarin A caused 50% inhibition at 

dose levels of 0.0006 ug/mL, making it one of the most potent cyto

static agents known. Diacetoxyscirpenol has also been found to be a 

mildly strong inhibitor of experimental tumors in mice and rats (22). 

The same workers found verrucarin A active against Yoshida sarcoma in 

higher mammals (23), and several trichothecenes have been found active 

against KB (human epidermal carcinoma) and L 1210 (leukemia) cells (la, 

24). 

All of the trichothecenes are potent toxins and poisons. Very 

dilute solutions of various verrucarins and roridins caused severe local 

irritation, inflammation and, in some cases, lesions when applied to the 

skin of laboratory animals and man (10, 25-28). 

As a warning to careless investigators, Bamburg reports that brief 

contact with a crude ethyl acetate extract of T-2 toxin [3a,46,8a,15-

tetrahydroxy-12,13-epoxy-A^-trichothecene, 8-(3-methylbutyryl)ester] 
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caused a severe burning sensation, followed by numbness and loss 

of skin (28d). 

The lethal dose (LDgg) values for oral, intraperitoneal, intra-

veneous and subcutaneous administration of many trichothecenes have been 

reported for laboratory animals (la, 3a, 20, 25). 

The broad range of biological properties exhibited by these natural 

products, together with the challenge presented by the complex tricyclic 

skeleton, have stimulated numerous synthetic approaches to the trichothe

cenes (29-37). 

Due to their structural complexity, the majority of the synthetic 

investigations have been directed towards the least complicated tri

chothecenes. Successful total syntheses have been reported for (+)-12,13-

epoxy-A^-trichothecene (1^) (32, 33) and trichodermol (^) (29a, 35), as 

well as some aromatic A-ring analogues (37), but all approaches to the 

more complex verrucarol have met with failure (vide infra). 

Two general synthetic routes have been employed to synthesize the 

trichothecene skeleton, one modeled broadly along biogenetic lines (33, 

35) and the other passing through a functionalized isochroman derivative 

(16) (29, 31, 32, 36). 

H H 
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H R 

3 

0 

IJ,  X = H, OH 

R = H, CHgCOgEt 

CHGCHO 

The first reported synthesis of (+)-12,13-epoxy-A^-trichothecene 

(IJ) was by Fujimoto, et al. in 1974 (32). The g-keto ester U was 

condensed with crotonaldehyde and the resultant aldehyde protected as the 

acetal. Meerwein-Ponndorf reduction afforded the cis-fused dihydropyran 

1^ in low yield. The stereochemistry at the ring fusion was deduced 

from the proton NMR. 

Reduction of 18 with lithium aluminum hydride provided alcohol 1^, 

which was tosylated and further reduced to methyl derivative 20. The 

reduction of the ester at this juncture seems unnecessary and unfortunate, 

as 1^ would appear to be a potential precursor to verrucarol C^) and 

the macrocyclic trichothecenes. 

EtOgC 
18 

H H 
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Treatment of M with m-chloroperbenzoic acid (nv-CPBA) resulted 

in selective attack at the enol ether. The resultant mixture of 

diastereomeric hydroxy-esters, derived from in situ solvolytic opening 

of the epoxide, was pyrolyzed, providing isochromanone 22. 

20 
m-CPBA heat 

63% 

21 22 

The introduction of the third ring was accomplished via a 5-step 

sequence. Alkylation with allyl bromide yielded an unexpected 0-

alkylation product (^), which was subjected to Claisen rearrangement, 

affording a 2:1 mixture of desired ^ to undesired 25. The mixture 

of diastereomers was separated and olefin 24 was converted to an alde

hyde. Base catalyzed intramolecular aldol condensation furnished tri

cycle 

^ heat 

90% 

R R 

M R = CH3, = CH2CH=CH2 

^ R = CHGCH^CHG, = CH3 

1) OsO, 

24 
2) NalO^ 

3) NAOCH, 
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Removal of the alcohol, by conversion to the iodide and reduction, 

furnished ketone Treatment of ^ with dimethyloxosulfonium methylide 

afforded the 12,13-epoxide epimeric to 15. Therefore, ketone ^ was 

olefinated (methylene triphenylphosphorane) and epoxidized, generating 

(+)-15 in low yield. The overall yield was 0.39% from g-keto ester 17. 

1) 03P=CH2 

2) m-CPBA 

25% 

•> (+)-15 

A second synthesis of (+)-%§ was reported by Masuoka and Kamikawa 

(33). Diketone available from 2-methylcyclopent-2-en-l-one and 

4-methyl-cyclohex-3-en-l-one, ethylene ketal in 10% yield (photochemi

cal dimerization, acid catalyzed rearrangement), was transformed into 

the diastereomeric mixture of acetoxy-ketones 29 via a four step sequence. 

4 steps 

48% 

Saponification of the acetate produced alcohol % and, as a minor 

product, tricycle Apparently, only the alcohol leading to the cis-

fused A-B ring system can cyclize, (Oddly, no further mention of ^ 

is made by the authors, although it appears to be a ripe precursor to 

(i)-15.) 
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29 OH © 

Inversion of alcohol ^ (mesyl chloride-pyridine, then tetra-ethyl-

ammonium acetate) and condensation with methyl magnesium iodide afforded 

diol When treated with acid, ^ cyclized to tricyclic olefin 

40% 
CH 

Epoxidation of ^ gave a 1:1 mixture of (±)-15 and regioisomer 34. 

Presumably, this lack of regiocontrol was the cause of the low yield 

conversion [30%) of ^ to (±)-l^ by Fujimoto, et al. 

0% li 

33 (+)-15 + 

This second synthesis, although shorter and somewhat more elegant 

than the first, proceeded in an almost identical overall yield (0.35%). 
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If one were to rank the trichothecenes based on the complexity of 

their functionality, the next degree of complexity would arise from 

the addition of one more functional group to (+)-12,13-epoxy-A^-tri-

chothecene. The molecule just described is trichodermol (^)> which 

has been synthesized twice (29a, 35). 

The preparation of ^ by Col vin, et al. in 1973 was the first 

successful preparation of the trichothecene skeleton. Starting diene 

^ was transformed by two parallel routes to key cis-fused bicyclic 

lactone The most efficient route was 5 steps and proceeded in 9% 

overall yield. Welch and Wong have also prepared ^ (30). 

5 steps 

36 
/-w 

Each group of investigators generated an identical allylic 

carbonium ion from isomeric allylic alcohols. The intramolecular 

trapping of the cation by the proximate carboxylic acid insures the 

cis stereochemistry at the ring junction. 

COoH 

CH 3 Col vin, et al. 

COoH 

Welch and Wonq 

36 
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Lactone ^ was alkylated (lithium diisopropylamide, methyl iodide) 

and treated with the lithium salt of 3,3-diethoxy propyne, to provide 

lactol ^ in high yield. 

Sodium borohydride reduction afforded a diol, which was reduced 

with sodium in ammonia to the trans-olefin, without reduction of any 

of the allylic oxygen functionality. Mild acid hydrolysis effected 

both deprotection of the aldehyde and addition of the alcohol to the 

unmasked enone. Selective oxidation with chromium trioxide-pyridine 

provided keto-aldehyde "a compound seemingly ripe for internal 

aldol condensation" (29a). 

Although ^ was an inseparable mixture of diastereomers, the authors 

reasoned that of the four possible diastereomers, only two (3^a and 39b) 

would be capable of attaining a transition state suitable for internal 

aldolization. Of these two remaining diastereomers, 39a would be 

H /CH(0Et)2 

OH 

CH(0Et)2 
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rendered less favorable due to an unfavorable steric interaction between 

the two carbon fragment and the A-ring. Thus, under conditions which 

would allow equilibration at the two centers adjacent to the ketone, 

intramolecular aldol condensation was expected to proceed through 39b, 

leading to a product with the exact stereochemistry required for tri-

chodermol. 

As fate would have it, no conditions could be found to induce ^ 

to undergo internal aldolization. (The authors list fifty separate 

sets of experimental conditions which were attempted without success.) 

Being frustrated by this transformation, the authors sought an 

alternative. Oxidation to the keto-acid, followed by treatment with 

acetic anhydride, provided a diastereomeric mixture of enol lactones 

(^). Reduction with tri-tert-butoxyaluminum hydride afforded a 

mixture of keto-aldehyde 39 and aldol product ^ in low yield. 

Acetylation, olefination and epoxidation afforded (+)-trichodermol. 

The overall yield was 0.025%. Trichodermol was acetylated to provide 

(+)-trichodermin. 

H 
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33% 
0 39 

53% 

20% 

% 

The most elegant trichothecene synthesis published to date is 

the trichodermol synthesis by Still and Tsai (35). 

Diels-Alder reaction of diene 42 with 1,4-benzoquinone ^ afforded 

adduct ^ in high yield. Epoxidation (t^BuOOH, Triton B) and Herz-

Favorskii ring contraction (NaOH, EtOH) provided 4^ as the sole product. 

The regioselectivity of the ring contraction was explained by "silyl 

oxygen-assisted a overlap" (35) with the proximate carbonyl, prevent

ing attack at that center. Epoxidation (t^BuOOH, Triton B) gave 46. 

0 

90% 
+ 

43 

OSiMeot-Bu 

42 

92% 
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The C-4 (trichothecane nomenclature) hydroxyl was introduced 

stereospecifically by dissolving metal reduction, to yield triol 

The unwanted primary alcohol was selectively acetylated and removed by 

an unusual photochemical reaction (deoxygenated HMPA, HgO, 450-W 

Hanovia, quartz). 

93% 
46 

65% 
SiMegt^Bu -> OSiMegjC-Bu 

Diol ^ was converted to alcohol 49 by a four step sequence. 

Anionic fragmentation provided in which all of the stereochemical 

centers have been introduced with the correct relative stereochemistry 

(38). 

85% 
48 

M OMs 
PhC 0 

Debenzoylation and hydroxyl-directed epoxidation [VBUOOH, VO(.acac) 

produced g-epoxide 51. Acid-catalyzed diol formation proceeded with 
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inversion at C-2. In situ hydroxy! addition afforded tricyclic product 

52^. The stereochemistry of the diol is that expected based on the 

inaccessibility of C-1 to nucleophilic attack. 

0 
75% 61% 

Conversion of 52 into (+)-trichodermol was accomplished by intro

duction of the methyl group at C-9 (CHgLi), mono-benzylation, oxidation 

at C-12 and dehydration. Olefin 53 was the major isomer of a 7:1 

mixture of olefins. 

36% 

OCPh 

Keto-benzoate 53 was elaborated to (±)-^ in the manner described 

by Col vin, et al. for the analogous acetate (vide supra). The overall 

yield was 0.64%. 

Although somewhat satisfactory routes have been devised for (±)-^ 

and 1^, approaches to the more complex verrucarol (2a) have met with 

little success. 

In an attempt to extend their previous work to permit the synthesis 

of verrucarol, Col vin, et al. synthesized the required enol lactone 
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CO.Et 

54 COgEt HO^ 55 

—» 

CHgOCHgO 
56 

CH30CH2 

Under no conditions could ^ be induced to cyclize to aldol product 

57. Their final comment was that "no crude reaction mixture, nor any 

of the individual components, showed the high IR carbonyl stretching 

frequency, 1760 cm~\ associated with bicyclo[3.2.l]octan-8-ones, 

nor did NMR spectrosocpy indicate any grounds for optimism" (29b). 

Snider and Amin have synthesized intermediate 55, but no further 

advancements have been forthcoming (34). 

OAc 

58 

Trost and Rigby have devised a clever, but long, synthesis of a 

precursor to Colvin's intermediate enol lactone ^ (36). The approach 

began with the transformation of 4-methyl-2-cyclohexene-l-one to 

aldehyde 62. 
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7 steps 

28% 

61 

62 

Compound 62 was further elaborated, via a cyclobutanone spiro-

annulation and Baeyer-Villiger oxidation to lactone 64. 

)D>< 
S0 

Li 
62 

2) pTSA 

HgOg 

0 NaOH 

62% 

Lactone M was transformed to tetrahydrofuran 6# by a five step 

sequence, and then was rearranged to isochromanone 6^ by a novel allyl 

sulfoxide rearrangement. 

H 

5 steps 
% 

19% 

CH.O / 65 O 

COGCHG 1) M-CPBA ̂  

2) DBU 
heat 

H H 
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H H 
COgCHg 

COgCHg 

Trost and Rigby stop at this point, indicating that "Raphael 

(Colvin, et al.) has worked out a procedure to convert such systems to 

the trichothecane skeleton of verrucarol" (36). Unfortunately, Col vin, 

et al. have demonstrated the uselessness of this intermediate (vide 

supra) (29). 
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RESULTS AND DISCUSSION 

Undaunted by the difficulties encountered by other researchers, we 

initiated a program directed towards the total synthesis of verrucarol, 

diacetoxyscirpenol, and the macrocyclic trichothecenes. 

A retrosynthetic outline of our approach is shown below. 

(moAc) —^ 

RO 
73 74 

Ketone M appeared to be perfectly suited for construction by way of 

a Diels-Alder reaction, if the cis-endo addition could be realized. To 

this end, the thermal reaction (115 °C, 24 h) of 1-acetoxy-3-methyl 

butadiene (34) (58) with 3-hydroxymethyl-3-buten-2-one (39) (^) was 

attempted, and afforded a 2:1 mixture of diastereomeric acetoxy-ketones. 

The stereochemistry of the major and minor products were tentatively 

assigned as structures 76 and respectively, by comparison with the 

NMR spectrum of compound 77. Ketone 77 was the exclusive product from 
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the tin tetrachloride catalyzed Diels-Alder reaction of 1-acetoxy-

butadiene and isopropenyl methyl ketone (40). Further transformations 

confirmed this assignment (vide infra). 

toluene reflux 24 h 

6 5.25 
J = 4.5 Hz 

6 4.12Jt 
br d 

6 5.23 
J = 4.5 Hz 

toluene 
-250 

In light of the excellent selectivity found in the preparation of 77. 

the reaction of 58 with 75 under Lewis acid catalysis was studied. 

After considerable experimentation, it was determined that the 

highest yields of M and 76 were obtained when ^ and ^ were reacted 

in the presence of boron triacetate (41) at low temperature. More 

Importantly, the desired diastareomer (^) was now the predominant isomer 

(3.5:1) formed in the reaction. The sensitive allylic acetates 7^ and 76, 

B(0Ac)3 
58. + 75 

toluene 
- 9 - 7 1 + 7 6  

3.5:1 
5 "C, 48 h 

were obtainable only within a narrow range of experimental conditions. 

At lower temperatures, the reaction proceeded sluggishly, whereas at higher 



www.manaraa.com

59 

temperatures (25 C), extensive decomposition occurred. The major product 

at room temperature was diene 78. Small amounts of 78 were also formed 

at 5 "C. 

58 + 75 
B(OAc). 

toi uene 
25 °C, 4 h 

xy  ̂
QSiMe.t-Bu 

78 ^ 

Other catalysts, such as tin tetrachloride and boron tri fluoride 

etherate, led to tarry materials. It is also noteworthy that boron 

triacetate did not catalyze the addition of diene 58 to isopropenyl 

methyl ketone. This is understandable if the catalyst must form a 

chelate ring {79) with the dienophile for effective catalysis. Without 

this complexation, boron triacetate is probably too weak a Lewis acid to 

be an effective catalyst. 

AcO. OAc 
\ / 

II I + HOAc 75 + B(0AC)3 

- V '  
79 

The crude mixture of alcohols 74 and 7^ were then protected as 

tert-butyldimethyl silyl ethers by employing the procedure of Corey and 

Venkateswarlu (42). Saponification of the acetates afforded the mixture 

of diastereomers 80 and 81. 

The two diastereomers were separated at this juncture by careful 

silica gel chromatography or, more conveniently, by preparative scale 
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t^BuMe.SiCI 
DMF KgCOg 

74 + 76 : > —^ 
^ imidazole CH^OH, 0 C 

33% 10% 

high pressure liquid chromatography. The undesired isomer (SJ) could 

then be epimerized to a 50:50 mixture of 80, and 8^ with a catalytic amount 

of benzyltrimethyl ammonium hydroxide. Presumably, the epimerization 

occurred by a process which involved an initial retroaldol followed by 

realdolization. In this manner, the overall yield of M could be raised 

to 38% from 3-hydroxymethyl-3-butene-2-one. Attempted epimerization of 

^ using triphenylphosphine, diethylazodicarboxylate, and formic acid (43) 

led to the recovery of starting materials. 

Having secured a route to our A-ring precursor, we began investigat

ing annelation strategies for elaboration of the B and C rings. Thus, 

80 was reacted with acid chlorides and pyridine, affording esters 

in excellent yields. Ester 83a was transformed into lactone 84a by 

80 
pyr 

t-BuMeoSiO'^ 
84a Y = H 83a X = Br 
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reaction with neat trimethyl phosphite at 95 °C followed by cyclization 

with sodium hydride in THF. The overall yield from 80 to 8^ was 67%. 

Our strategy for the conversion of ^ into the desired ketone ^ involved 

the reduction of the lactone to an ether, followed by the selective trans

formation of the olefin in ring B to a ketone. The initial phase of 

this plan was efficiently accomplished using a modification of a reduction 

procedure developed by West, et al. (44). Reduction of S^a with diisobutyl 

aluminum hydride (DIBAL) afforded an unstable lactol, which could be 

reduced to allylic ether ^ with triethyl silane and boron trifluoride 

etherate at -78 °C. No olefin migration was observed as evidenced by the 

NMR of the crude product. Removal of the alcohol protecting group with 

tetra-iT-butyl ammonium fluoride (42) produced alcohol % in 88% yield. 

Although the conformation of % most consistent with the observed 

coupling constant (2 = 3 Hz) between the C-11 (trichothecane numbering 

system) methine hydrogen and the vinyl proton at C-10 placed the hydroxy1 

group closer to the olefin in the A ring, we felt that the preference for 

epoxidation of homo-allylic alcohols over bis-homoallylic alcohols 

demonstrated by transition metal catalyzed epoxidations would be strong 

enough to allow for selective epoxidation of the olefin in ring B. 

Therefore, directed epoxidation employing the method of Sharpless and 

H 
1) DIBAL 

84a 
2) EtgSiH 

BFg.EtgO 
81% 
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Michaelson (45) was attempted and proved to be highly selective. The 

ring B epoxide (87,) was the sole product by NMR and thin-layer chromatog

raphy. The yield of 8^ after chromatography was 73%. 

R = H 

R = COCH3 

R = COCHgBr 

Further support for the identity of ^ was provided by the synthesis 

of the regioisomeric epoxide (^). This was accomplished unambiguously 

from 8^ by a four-step sequence. 

1) DIBAL m-CPBA 
84a 

CH.CI 

OCH 

Consistent with its assigned structure, the epoxide hydrogen in ̂  

appeared as a doublet (J, = 4 Hz). Irradiation experiments demonstrated 

it to be coupled to one hydrogen of an AB quartet centered at 6 4.95. 

The epoxide hydrogen in ^ was a singlet. 

Protection of the alcohol as the acetate or bromoacetate proceeded 

in high yield. Unfortunately, all attempts to convert the epoxide to a 

86 
Mo(CO)( 

t-BuOOH 

benzene 
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ketone failed miserably. Attempted epoxide isomerization (46) with boron 

trifluoride etherate in toluene (47), lithium perchlorate in refluxing 

benzene (48), sodium iodide in dimethyl sulfoxide (49), or tin tetra

chloride in toluene (50) led to either decomposition or recovery of the 

starting epoxide. When conditions were finally found in which migration 

occurred, alkyl migration occurred in preference to hydrogen migration. 

Thus, treatment of ^ with anhyd ZnBrg in refluxing benzene (51) furnished 

aldehyde 93 in high yield. 

Alternatively, we felt that TZ could be approached from an 

a-hydroxyketone by reductive elimination. This plan would also permit 

the regioselective formation of an enol silyl ether. When ^ was refluxed 

with perchloric acid in THF-water or sulfuric acid in acetone-water, diol 

9^ was produced in high yield (52). Unfortunately, attempted oxidation 

(N-chloro-succinimide, dimethyl sulfide (53); N-bromosuccinimide in 

aqueous dioxane (54); dimethyl sulfoxide (DMSO), dicyclohexyl carbo-

diimide and various acids (55); DMSO, acetic anhydride (56); silver 

carbonate on Celite (57)) failed to yield the desired ketone. In each 

case, unreacted diol was recovered (58). 

H 

benzene 
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H-0" 
88 — > 

1) Oxidation 
X > 72 

As a consequence of our failure to transform the epoxide into a 

ketone, an alternate route was developed. Cyano ester ^ was cyclized 

to bicyclic lactone ^ with 1,5-diazabicyclo[4.3.0]non-5-ene. The 

yield was 75% from 80. The corresponding diester ^ failed to cyclize 

under a variety of conditions. Treatment of ^ with DIBAL at -78 °C 

afforded a cyanolactol, which was further reduced to ether ^ with boron 

tri fluoride etherate and triethylsilane. The DIBAL reduction of 95 

provided aldehyde 96 in 94% yield. Aldehyde 96 was also produced as a 

minor product in the reduction of ^ to Attempts to convert ^ 

directly to %, without the intermediary of ^ (by treatment with excess 

DIBAL followed by boron trifluoride etherate and triethylsilane) resulted 

in lower overall yields of 96. 

84b 
1) DIBAL 

65% - 9.3% 

CHO 

96 

? 
DIBAL, 94% 
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Oxidation of aldehyde 96 with sodium chlorite in aqueous tert-butanol 

(59) provided the highly crystalline acid ^ in 80% yield. Acid ^ was 

transformed into ketone 72 Curtius degradation (60) and desilylation 

(42). 

NaClO, 

HgO, t-BuOH 

1) ClCOgEt, EtgN 

NaN, 
98a R = SiMe.t-Bu 

As an additional proof of structure, ketone J Z m s  converted into 

ether M by cyclization with phenylselenyl chloride and reductive 

deselenylation (61). Ether ^ was identical in all respects (IR, NMR, 

capillary column gas chromatography) with material prepared from isomeric 

ketone 1_00, in which the cis-ring juncture had been unambiguously 

defined by the synthetic approach (62). 

1) PhSeCl 1) PhSeCl 

100 

Having surmounted the obstacles presented by the synthesis of 

we addressed the problem of introducing the C-ring. Being cognizant of 
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the failure of Col vin, et al. (vide supra), we set about the introduction 

of the quaternary center at C-5. Critical to the success of this 

approach were the attainment of the more highly substituted enolate 

and the introduction of the proper two carbon fragment with the correct 

relative stereochemistry. 

In order to determine the best method for introducing the requisite 

two carbon fragment, we synthesized model systems 1^-1^ and submitted 

each to a variety of cyclization protocols. Treatment of compounds TOl,-

0 0 0 0 

1^ with numerous base-solvent pairs : magnesium methoxide in 

methanol, potassium tert-butoxide in benzene, lithium tert-butoxide in 

tert-butanol, AlgOg in toluene; 1^-3: lithium diisopropylamide in 

tetrahydrofuran, magnesium methoxide in methanol, potassium tert-butoxide 

in tetrahydrofuran) afforded solely the products derived from alkylation 

at the oxygen. 

SBu 

104 105 

106 



www.manaraa.com

67 

102 

COLCH 

103 

108 
OCHgOCHg 

In retrospect, this result is not at all surprising. The transition 

state for O^'al kylation should be easier to attain as the two carbon 

fragment is in the plane of the enolate, whereas for C-alkylation, it 

must be perpendicular to the enolate. Examination of molecular models 

indicated that the latter transition state is much less easily attained. 

Thus, it became obvious that the bicyclo[3.2.l]octan-8-one ring system 

could not be approached via the alkylative route. 

We next turned to keto ester 1_04. Work by Piers, et al., in which 

the similar keto ester 1^ had been cyclized directly to diketone V[0, 

indicated that 1^ might be a precursor to the bicyclo[3.2.i] octanedione 

m (63). To our surprise, we could not duplicate the work of Piers, et 

al. in our system, and no conditions could be found to effect this 

transformation. 

NaN(SiMeJ 

110 

0 
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O-Et 
h 

104 

* -> 

Having been thwarted by this transformation, we synthesized keto 

aldehyde 1^ from olefin 1_12, (64) by either ozonolysis or osmium tetroxide 

catalyzed hydroxy!ation followed by cleavage with sodium periodate. 

When 1^ was treated with sodium methoxide in refluxing methanol, it 

cyclized smoothly to ketol ]J3. The Corey-Kim oxidation (65) of 1J_3 

provided the bicyclo[3.2.lJoctan-l,8-dione 114 in high yield. 

CHO 

112 2) 03P 

OH NCS, MegS 

NaOCH-

CH3OH 
105 

113 CH3 

EtgN, CH2CI2 

m 

With this modest success in hand, we returned our attention to the 

real system. Employing the excellent procedure of Miller and McKean (66), 

we successfully negotiated the first obstacle toward the introduction of 

the quarternary center at C-5. Thus, treatment of ketone % with tri-

methylsilyl iodide and hexamethyldisilazane in methylene chloride 
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afforded the desired silyl enol ether in greater than 95% yield as 

determined by gas chromatography. 

CHgClg 

MegSil 

(MegSijgNH 

t-DUMBgaiU > 95:5t"GuMe2SiO 

iSiMe, 3 

115 

Buoyed by this success, we prepared the analogous silyl enol ether 

IJJ, confident that intramolecular alkylation would guarantee the stereo

chemistry at C-5. This strategy would avoid the mixture of epimers 

suffered by Fujimoto, et al. (32). Sensitive silyl enol ether 117 could 

only be obtained by employing a slight deficiency of trimethylsilyl iodide 

(0.95 eq). When an excess was used, as is prescribed by Miller and Mckean, 

no recognizable products were isolated. Formation of the tetra-ji-butyl-

ammonium enolate (67) at -78 °C and warming to ambient temperature furnished 

a 47% yield of the crystalline lactone 1J8. When the iodoester was 

employed in this reaction sequence, a slight improvement (50%) in 

the yield was obtained. The major by-product in each case was the acetate 

of 72 derived from reductive removal of the halogen (30-40%). This 

material could be recycled by saponification to keto alcohol IZ. 

1) BrCHgCOBr 

pyridine. 93% ^ 

2) 0.95 eq, Me,SiI, 

H 
0 

cy) 3 * 

(Me3Si)2NH, CHgClg, 
-25 OC 

0 
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H 
jUo 

TIZ 
n-Bu.F 
- " >• 
THF 0 

-78 °C 

118 G 

Surprisingly, attempts to alkylate the anion derived from IJJ 

(generated by cleavage of the silyl enol ether with'either methyllithium 

(68) or tetra-n_-butylammonium fluoride) with ally! iodide or ethyl iodo-

acetate led to decomposition of the starting ketone. It is possible 

that alkylation of these anions can only be successful intramolecularly, 

where product formation is competitive with decomposition. 

Having unambiguously established the center at carbon 5, we sought 

to elaborate the lactone into an aldehyde. This proved to be more 

difficult than expected. Attempts to differentiate the two carbonyls by 

protection of the ketone proved fruitless. Both attempted ketalization 

(69) and enol silyl ether (66) formation resulted in recovery of the 

starting ketone. We could produce the enol methyl ether with trimethyl 

orthoformate and para-toluenesulfonic acid (70), but the yield was low. 

In spite of our failure to protect the ketone, we decided to attempt 

reduction of the lactone without protecting the ketone. Conceivably, the 

ketone, being adjacent to a quaternary center, would be too hindered to 

be reduced by a bulky hydride donor. To this end, 1J3 was treated with 

one equivalent of diisobutylaluminum hydride (DIBAL) at -78 °C. Aqueous 

hydrolysis afforded a single compound in which examination of the NMR 
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spectra revealed that reduction had occurred as predicted. This was 

evidenced by the upfield shift of the protons adjacent to the lactone 

carbonyl without any appreciable shift of those adjacent to the ketone 

carbonyl. Unfortunately, the infrared spectrum was devoid of absorptions 

in the carbonyl region. Similarly, the CMR spectrum evidenced no 

carbonyl resonances. Instead, it possessed two resonances (s 99.43 and 

81.09) characteristic of acetal or ketal-like structures. Two possible 

structures consistent with the spectral data are shown below. Fujimoto, 

et al. passed through an intermediate similar to 120 (32). Unlike the 

keto aldehyde hydrate synthesized by Fujimoto, et al., the reduction 

product derived from 1J8 did not open under basic catalysis. Attempted 

acetylation led to recovery of starting material, which is consistent 

with the internal acetal structure present in ^9. 

In order to avoid the dead end presented by V19, lactone IJ^ was 

opened to the hydroxy-acid and treated with diazomethane in situ (71). 

H H 

1) LiOH, THF-HgO H 

COgCHg 121 
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Not surprisingly, attempts to reprotect the alcohol as the tert-

butyldimethyl silyl ether employing the methods of Corey and Venkateswarlu 

(42) or Chaudhary and Hernandez (72) resulted in reclosure to lactone 

The alcohol could be benzoylated (benzoyl chloride, pyridine, 

0 °C) in 63% yield. The remainder of the material was lactone ns. 

Obviously, what we needed was a reagent which would react rapidly and 

quantitatively with alcohol at low temperature. We found this reagent 

in the silyl perchlorates developed by Barton and Tully (73). Addition 

of 1^ to an acetonitrile solution of tert-butyldimethylsilyl perchlorate 

and pyridine at 0 °C resulted in quantitative formation of ether 1_^. 

By employing this two step procedure, 1^ was available in yields greater 

than 90% from keto lactone 118. 

Keto ester 122 was reduced in 80% yield to diol ^3 with lithium 

aluminum hydride. Swern oxidation (74) then furnished keto aldehyde 124, 

which was cyclized to tricyclic ketol 1^ with sodium methoxide in 

refluxing methanol (32). The ease (30 min at reflux, 63% yield) with 

which this transformation occurs is in marked contrast to aldolization 

from the opposite side (vide supra). 

H 

121 

t-BuMe.SiClO 

t^BuMegSiO 
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LiAlH, 

etheJ 
122 > 

t^BuMegSiO 
"i 

123 OH 

NaOCH, Y^°\ 
K,X4X|X̂ 0 CHLOH 

— 
t^BuMegSiO ""^CHO 

124 

(CH3)2S=0 

oxalyl chloride 
> 

EtgN 

t^BuMegSiO 

125 

The source of these disparate actions on treatment with base must 

stem from the conformational preferences of the two regioisomeric 

aldehydes. Examination of molecular models indicated that the 

acetaldehyde fragment in aldehyde 12^ would assume an axial orientation 

in order to minimize eclipsing between the quarternary methyl and carbon-

7 in the A ring. This is also the conformation most favorable for 

intramolecular aldolization. In the regioisomeric keto aldehyde (^) 

no interaction of this sort exists, such that the acetaldehyde fragment 

rarely (if ever) adopts a position from which intramolecular cyclization 

can occur. Thus, Col vin, et al. found that they could not form this 

crucial carbon-carbon bond (29b). 

Ketol 1^ was formed as a mixture of C-3 epimers which was estimated 

to be approximately 6:1 by proton NMR. No attempt was made to ascertain 

which isomer predominated, but the results of Colvin, et al. would indicate 
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that chelation of the metal counterion in the aldol should favor the 

production of the exo isomer (29a). 

Oxidation of 125 with either pyridinium chlorochromate (75) (PCC) 

or pyridinium dichromate (76) (PDC) in methylene chloride furnished 

tricyclic diketone 71, albeit in only 50% yield. 

PCC or PDC 
125 

71 

Strong support for the identity of diketone is provided by its 

carbon-13 NMR, which shows the correct number of carbon atoms, two of 

which appear at 209.983 and 207.577. 

Compounds 125 and possess the correct relative configuration at 

the four asymmetric centers present in the trichothecene skeleton and 

represent the first synthesis of a trichothecene possessing oxygen 

functionality in the C-ring and at C-15 (77, 78). 

Diketone 7\ should prove to be an especially valuable intermediate 

for the synthesis of highly oxygenated trichothecenes, in particular, 

diacetoxyscirpenol (^) and calonectrin (^). 

A plausible scheme for the conversion of into these natural products 

might begin with silyl enol ether formation and olefination. This should 

furnish triene 126. 
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71 OSiMe-: 

t-BuMegSiO'^ 

126 

Epoxidation should occur selectively from the exo face of the 

enol ether, affording exo alcohol 127 on basic hydrolysis (79). 

126 

t^BuMegSiO 

m OH 

Reduction, epoxidation and desilylation should then afford anguidin 

triol, an immediate precursor to diacetoxyscirpenol. A similar scheme 

could be employed to synthesize the simpler calonectrin. 

127 \\K\ OH 

In summary, a synthesis of the trichothec-9-ene skeleton, in which 

the four asymmetric centers present are introduced unambiguously with 

the correct relative configuration, has been described. 
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EXPERIMENTAL 

General 

Unless otherwise noted, materials were obtained from commercial 

suppliers and were used without further purification. Diethyl ether, THF, 

benzene and toluene were distilled from LiAlH^ prior to usage. Dichloro-

methane was distilled from PgOg. All organic extracts were dried over 

NagSOg, except where otherwise noted. Melting points were determined 

on a Fisher-Johns melting point apparatus and are uncorrected. Infrared 

spectra were determined on a Beckman IR-4250 spectrometer. Nuclear 

magnetic resonance spectra were determined on either a Hitachi Perkin-

Elmer R-20B 60 MHz or Varian HA-100 instrument. Carbon-13 NMR spectra 

were determined on a JEOL FX-90Q Fourier Transform Spectrometer. Both 

proton and carbon chemical shifts are expressed in parts per million 

down-field from internal tetramethylsilane. High-resolution mass spectra 

were recorded on an AEI MS-902 high-resolution mass spectrometer. 

Elemental analyses were performed by Galbraith Laboratories, Inc. 

cis-l-(l-tert-Butyldimethyl silyloxymethyl-2-hydroxy-4-methyl-3-cyclo-

hexenyl )-l-ethanone (^) 

Boron triacetate (76 g, 405 mmoles) was added in one portion to a 

rapidly stirred solution of 3-hydroxymethyl-3-buten-2-one (27g, 270 

mmoles), l-acetoxy-3-methyl butadiene (37.8 g, 300 mmoles) and hydro-

quinone (2 g) in 600 mL of dry toluene cooled to 0 °C. The resulting 

suspension was stored at 5 °C for two days. The now dark brown suspension 
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was placed in an ice bath and the catalyst destroyed by slow addition of 

aqueous bicarbonate with vigorous stirring. When the mixture had assumed 

a bright yellow-orange color, it was transferred to a separator/ funnel 

and partitioned between water (500 ml) and ether (1 L). The organic 

layer was washed with water (2 x 200 ml), bicarbonate (2 x 250 mL) and 

brine (100 mL). The dried solution was filtered and concentrated, afford

ing 46.2 g of a bright orange oil which was estimated to be a 3:1 mixture 

of compounds 7^ and by NMR and TLC data. 

After dissolution of the crude mixture of diastereomers in dry 

N,N-dimethylformamide (100 mL), tert-butyldimethylchlorosilane (46.5 g, 

308 mmoles) and imidazole (81.6 g, 1200 mmoles) were added. The mixture 

was stirred at 45 °C for 4.5 h, and then partitioned between hexanes 

(600 mL) and water (150 mL). The organic layer was washed with water 

(100 mL), brine (100 mL) and dried. Removal of the solvents yielded 

68 g of silylated material. 

The crude mixture of acetates was dissolved in dry methanol (500 mL) 

and cooled to 0 °C. Potassium carbonate (69 g, 500 mmoles) was added and 

the mixture was stirred vigorously. When the reaction was judged complete 

by TLC analysis (4-5 h), it was acidified with 6 N HCl (pH 3) and the 

methanol was removed under reduced pressure. The residue was taken up 

in ether (500 mL) and washed with water (150 mL), 1 N HCl (150 mL), 

bicarbonate (150 mL) and brine (100 mL). The ether layer was dried and 

the solvents removed. The residue was chromatographed (silica gel, 30:1 

hexanes-EtOAc) to afford two major substances: the undesired diastereomer 

m, (3:1 hex-EtOAc) = 0.35, 8.3 g (10%): IR (film) 3450, 2960, 2860, 
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1715, 1255, 1105 cm'T; 100 MHz NMR (CDCI3) 6 0.10 (s, 6 H), 0.88 (s, 

9 H), 1.68 (br s, 3 H), 1.8-2.0 (m, 4 H), 2.22 (s, 3 H), 2.60 (br s, 

1 H, -OH), 3.76, 3.92 (AB quartet, J = 10 Hz, 2 H), 4.58 (m, 1 H), 

5.50 (m, 1 H); 90 MHz C-13 NMR (CDCI3) 6 -5.72, 18.14, 22.89, 24.00, 

25.82, 27.44, 27.77, 55.67, 65.17, 67.70, 123.49, 137.28 and 'major 

isomer 27.4 g (33%): (3:1 hex-EtOAc) = 0.21; IR (film) 3440, 

1715 cm"T; 100 MHz NMR (CDCI3) 6 0.10 (s, 6 H), 0.88 (s, 9 H), 1.70 

(br s, 3 H), 1.97 (br s, 4 H), 2.24 (s, 3 H), 2.67 (d, J = 6 Hz, 1 H, 

-OH), 3.60, 3.74 (AB quartet, J = 11 Hz, 2 H), 4.16 (m, 1 H), 5.52 (m, 

1 H, collapses to d, ^ = 5 Hz on irradiation at 6 1.70); 90 MHz C-13 

NMR (CDCI3) 6 18.141, 22.108, 23.020, 25.816, 27.507, 27.898, 56.250, 

65.484, 68.086, 122.906, 137.733, 213.104. High-resolution mass 

spectrum for C.jgH3g03Si requires m/e^ 298.19643; found m/£ 298.19645. 

cis-1-(1-tert-Butyldimethyl s i 1yloxymethy 1-2-bromoacetyl oxy-4-methyl-

3-cyclohexenyl)-l-ethanone (8^) 

To a 0 °C solution of alcohol 80 (2.25 g, 7.55 mmoles) and dry 

pyridine (1.45 mL, 18 mmoles) in dichloromethane (11 mL) was added a 

solution of bromoacetyl bromide (1.43 mL, 15.1 mmoles) in dry THF (13 

mL) dropwise over a period of 10 min. The resulting suspension was 

stirred a further 30 min, and then poured into 200 mL of ether. The 

organic layer was washed with water (30 mL), 1 N HCl (2 x 20 mL), 

bicarbonate (2 x 20 mL) and brine (20 mL). The dried solution was 

filtered and concentrated, affording a quantitative yield of bromo-

acetate IR (film) 2980, 2960, 2870, 1740, 1715, 1275, 1105, 835, 
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770 cm'T; 100 MHz NMR (CDClg) 6 0.10 (s, 6 H), 0.89 (s, 9 H), 1.72 (m, 

3 H), 2.0-2.2 (m, 4 H), 2.17 (s, 3 H), 3.43, 3.72 (AB quartet, J = 10 

Hz, 2 H), 3.73 (s, 2 H), 5.27 (br d, J = 5 Hz, 1 H), 5.60 (m, 1 H, 

collapses to d, ^ = 5 Hz on irradiation at 5 1.72). High-resolution 

mass spectrum for C^^H2204BrSi (parent ion-57) requires m/e^ 361.04707; 

found m/e^ 361.04603. 

(±)-(4aa, 8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7-dimethyl-4a,5,6,8a-

tetrahydro-2H-l-benzopyran-2-one (8^) 

Bromo acetate 8^ (1.694 g, 4.04 mmoles) and trimethyl phosphite 

(1.42 mL, 16 mL) were heated together at 90-95 °C under nitrogen for 

12 h. The mixture was cooled to room temperature, and then the excess 

phosphite was removed under vacuum (approximately 1 mm, 10 h, room 

temperature), affording the crude phosphonate. High-resolution mass 

spectrum requires for CggH^yO^PSi m/£ 448.20463; found m/£ 448.20472. 

The crude phosphonate was dissolved in 16 mL of anhyd THF and added 

dropwise to a suspension of sodium hydride (pentane washed) in 5 mL of 

anhyd THF at 0 °C under nitrogen. After the completion of hydrogen 

evolution, the cooling bath was removed and the solution was allowed to 

warm to room temperature. When all starting material was judged to have 

been consumed by TLC analysis, the suspension was poured into ice water. 

The aqueous layer was extracted with ether (3 x 50 mL) and the combined 

ether layers were washed with water (15 mL) and brine (15 mL). Drying 

and removing the solvents gave an oil, which was chromatographed (silica 

gel, 10:1 hex-EtOAc), affording 1.604 g (67%) of a pale yellow oil: 
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(3:1 hex-EtOAc) = 0.25; IR (film) 2980, 2970, 1725 cm'S 100 MHz NMR 

(CDCI3) 6 0.10 (s, 6 H), 0.88 (s, 9 H), 1.71- (br s, 3 H), 1.8-1.96 

(m, 4 H), 1.90 (d, 1.6 Hz, 3 H), 3.57, 3.68 (AB quartet, 9.6 Hz, 

2 H), 4.94 (m, 1 H), 5.44 (m, 1 H), 5.84 (q, J = 1.6 Hz, 1 H); 90 MHz 

C-13 NMR 6 18.199, 18.625, 22.878, 25.224, 25.655, 27.268, 42.143, 65.533, 

75.919, 119.187, 119.720, 138.800, 160.355, 163.707. High-resolution 

mass spectrum requires for C^gH^gO^Si m/e^ 322.19643; found m/e_ 322.19647. 

(+)-(4aa, 8aa)-4a-tert-Butyldimethyl si1yloxymethyl-4,7-dimethyl-4a,5,6,-

8a-tetrahydro-2H-l-benzopyran (85) 

Diisobutylaluminum hydride (1.0 M, hexanes) was added portion-wise 

to a 0.3 M toluene solution of the unsaturated lactone ^ (2.372 g, 

7.37 mmoles) cooled to -78 °C (Dry Ice-CH^OH bath) until TLC analysis 

judged the reaction complete. It was then poured into a rapidly 

stirred mixture of ice (25 g) and acetic acid (7 mL). Chloroform (50 

mL) was added and the two phase system stirred vigorously for 10 min. 

Another 100 mL portion of chloroform was added and vigorous stirring 

continued until two distinct layers formed when stirring was halted 

(typically 30-60 min). The layers were separated and the organic layer 

was washed with bicarbonate (2 x 100 mL) and brine (75 mL). The dried 

solution was filtered and concentrated. The resultant colorless oil 

was used without purification. 

The crude lactol and triethylsilane (1.22 g, 10.5 mmoles) in di-

chloromethane (25 mL) were cooled to -78 °C under nitrogen. Dropwise 

addition of boron trifluoride etherate (0.95 mL, 7.7 mmoles) gave a 
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light brown solution which was stirred a further 15 min, then quenched 

by addition of approximately 10 mL of aqueous bicarbonate. The cool

ing bath was removed and the solution was allowed to warm to room 

temperature with vigorous stirring. After transfer to a separatory 

funnel, ether (100 mL) was added and the whole washed with bicarbonate 

(20 mL) and brine (20 mL). Drying and removing the solvents provided 

a crude yellow oil which was chromatographed (silica gel, 25:1 hex-

EtOAc) to yield ^ (1.83 g, 81%) as a coldrless oil: (3:1 hex-

EtOAc) = 0.61; IR (film) 2980, 2970, 2870, 1110 cm"^ 100 MHz NMR 

(CDCI3) 6 0.10 (s, 6 H), 0.90 (s, 9 H), 1.7-2.0 (m, 10 H), 3.50, 3.72 

(AB quartet, J = 10 Hz), 4.02 (q, J = 2.5 Hz, 2 H), 4.20 (m, 1 H), 

5.44 (m, 2 H); 90 MHz C-13 NMR (CDCI3) 6 18.314, 23.135, 25.579, 25.898, 

27.523, 41.124, 62.469, 65.511, 70.917, 121.353, 123.412, 134.517, 

139.014. High-resolution mass spectrum for C^gH3202^^" i^equires m/^ 

308.21717; found m/e^ 308.21645. 

(±)-(4aa, 8aa)-4,7-Dimethyl-4a-hydroxymethyl-4a,5,6,8a-tetrahydro-2H-

1-benzopyran (^) 

Silyl ether(1.68 g, 5.45 mmoles) and tetra-ji-butyl ammonium 

fluoride (0.75 M THF, 20 mL, 15 mmoles) were combined and stirred two 

hours at room temperature. The light yellow solution was poured into 

75 mL of bicarbonate. The aqueous layer was extracted twice with ether 

(100 mL) and the combined ether layers were washed with bicarbonate 

(25 mL) and brine (25 mL). Concentration of the dried solution afforded 

a light yellow oil which was chromatographed (silica gel, 5:1 
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hexanes-EtOAc) providing 0.93 g (88%) of alcohol 86 as a colorless oil: 

(3:1 benzene-acetone) = 0.15; IR (film) 3450, 2980, 1675, 1450, 

1115 cm'T; 100 MHz NMR (CDCI3) 6 1.7-2.05 (m, 10 H), 2.95 (br s, 1 H, 

-OH), 3.53, 3.70 (br AB quartet, J = 11 Hz, 2 H), 4.04 (m, 2 H), 4.34 

(m, 1 H), 5.35 (m, 1 H), 5.62 (m, 1 H, collapses to t, ̂  = 3 Hz on 

irradiation at 5 1.702, to br s on irradiation at 6 4.04); 90 MHz 

C-13 NMR (CDCI3) 17.46, 22.914, 25.865, 26.894, 40.492, 61.837, 68.175, 

74.561, 120.779, 125.058, 132.372, 139.631. High-resolution mass 

spectrum for C^gHigOg requires m/e_ 194.13068; found m/e^ 194.13009. 

(±)-(3a,4a,4aa,8aa)-4,7-Dimethyl-4a-hydroxymethyl-3,4,4a,5,6,8a-hexa-

hydro-2H-l -benzopyran-3,4-epoxide (^) 

tert-Butyl hydroperoxide (0.12 mL, 1.25 mmoles) in 1.25 mL of 

benzene was dried over sodium sulfate. The resulting clear solution 

was added to a 0.3 M benzene solution of alcohol ^ (0.202 g, 1.04 

mmoles) and hexacarbonyl molybdenum (0.025 g). The whole was refluxed 

for 1.5 h. The cooled solution was filtered through silica gel (20 g, 

5:1 hex-EtOAc as eluent) to provide, in order of elution, 40 mg (20%) 

of recovered ^ and 0.16 g (73%, 91% based on recovered ^) of epoxide 

87 as a colorless oil: R^ (3:1 hex-EtOAc) = 0.10; IR (film) 3450, 1135 

cm'T; 100 MHz NMR (CDClg) 6 1.46 (s, 3 H), 1.72 (br s, 3 H), 1.9-2.1 

(m, 4 H), 2.50 (br s, 1 H, -OH), 3.04 (d, J = 4 Hz, 1 H), 3.5-3.9 (m, 

4 H), 4.14 (dd, J = 4, 13 Hz, 1 H), 5.46 (m, 1 H); 90 MHz C-13 

NMR (CDClg) 19.093, 22.939, 22.048, 27.436, 39.246, 58.694, 61.891, 
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64.058, 64.383, 68.121, 119.532, 139.252. High-resolution mass 

spectrum for C^^H^gOg (P-31 = loss of CHgO) requires m/e 179.10721; 

found m/e^ 179.10784. 

(±)-(4aa, 8aa)-4a-tert-Buty1dimethylsilyloxymethyl-4,76-dimethyl-4a,-

5,6,7,8,8a-hexahydro-2H-l-benzopyran-2-one-7a,8a-epoxide (9g) 

The olefinic lactone ^ (1.3 g, 4.1 mmoles) was dissolved in 

dichloromethane (10 mL) and meta-chloroperbenzoic acid (1.06 g, 4.9 

mmoles of commercial 80%) was added portionwise. The slurry was 

stirred at ambient temperature for 3 h. It was diluted with ether 

(150 mL) and was washed with saturated aqueous sodium bicarbonate 

(10 mL), 10% aqueous sodium bisulfite (10 mL), bicarbonate (10 mL) and 

brine (10 mL). The dried solution was filtered and concentrated, 

affording 1.38 g (100%) of epoxide ^ as a colorless oil: IR (film) 

2960, 2930, 2860, 1725, 1250, 1100, 830 cm'^; NMR (CDCI3) 0.06 (s, 

6 H), 0.90 (s, 9 H), 1.32 (s, 3 H), 1.4-1.8 (m, 7 H), 1.96 (d, J = 

1.5 Hz, 3 H), 3.07 (s, 1 H), 3.58 (s, 2 H), 4.67 (s, 1 H), 6.02 (q, 

J = 1.5 Hz, 1 H). 

(±)-(4aa, 8aa)-4a-tert-Buty1dimethylsilyloxymethyl-4,70-dimethy1-2a,3-

methoxy-4a ,5,6,7,8,8a-hexahydro-2H-l-benzopyran-7a,8ct-epoxide (^) 

Diisobutylaluminum hydride (4.4 mL of a commercial 1.0 M hexanes 

solution) was added dropwise to a -78 °C toluene (12 mL) solution of 

lactone ^ (1.38 g, 4.1 mmoles) under nitrogen. When the reaction 

was judged complete by thin-layer chromatography (approximately 1 h). 
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it was poured into a rapidly stirred slurry of ice (10 g) and acetic 

acid (5 ttiL). Chloroform (50 mL) was added and the rapid stirring was 

continued until both layers had clarified (2 h). The layers were 

separated. The organic layer was washed with saturated aqueous 

sodium bicarbonate (3 x 10 mL) and brine (10 mL). The dried solution 

was filtered and concentrated. The residue was dissolved in anhyd 

tetrahydrofuran (10 mL). Methanol (0.6 mL) and £-toluenesulfonic acid 

(20 mg) were added and the solution was stirred at ambient temperature 

for 2 h. It was then diluted with ether (100 mL) and washed with 

half-saturated brine (10 mL). The dried solution was filtered and 

concentrated. The residue was chromatographed on silica gel (hexanes-

ethyl acetate), furnishing 594 mg (42%) of 91 as a colorless oil: 

IR (film) 2960, 2930, 2860, 1250, 1220, 1100, 830, 770 cm"^ NMR 

(CDCI3) S 0.06 (s, 6 H), 0.90 (s, 9 H), 1.30 (s, 3 H), 1.4-1.8 (m, 

7 H), 3.23 (s. H), 3.52 (s, 3 H), 4.24 (s, 1 H), 4.85 (m, 1 H), 5.68 

(m, 1 H). 

(+)-(4aa, 8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7g-dimethyl-4a,5,-

6,7,8,8a-hexahydro-2H-l-benzopyran-7a,8a-epoxide (92) 

Boron tri fluoride etherate (0.07 mL, 0.56 mmoles) was added drop-

wise to a -78 °C solution of acetal 9], (180 mg, 0.51 mmoles) and 

triethylsilane (90 mg, 0.765 mmoles) in dichloromethane (2 mL). The 

solution was stirred at -78 °C for 15 min, quenched by addition of 

saturated aqueous bicarbonate and warmed to ambient temperature. The 

two phase mixture was extracted with ether (2 x 50 mL) and the 
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combined ether layers were washed with bicarbonate (10 mL) and brine 

(10 mL). The dried solution was filtered and concentrated. The 

residue was chromatographed (silica gel, hexanes-ethyl acetate), 

providing 150 mg (91%) of ether &2 as a colorless oil: IR (film) 

2960, 2930, 2860, 1250, 1100 cm'^ 100 MHz NMR (CDClg) 0.06 (s, 6 H), 

0.89 (s, 9 H), 1.28 (s, 3 H), 1.5-1.9 (m, 7 H), 2.99 (s, 1 H), 3.50 

and 3.62 (AB quartet, 2= 9 Hz, 2 H), 4.1 (m, 3 H), 5.58 (m, 1 H); 

90 MHz C-13 NMR (COCI3) 5 18.368, 21.239, 22.268, 25.898, 26.440, 

40.474, 58.622, 61.385, 61.764, 66.908, 69.725, 124.170, 132.675. 

High-resolution mass spectrum for C^^HggOgSi (P-57) requires m/e_ 

267.14165; found m/e^ 267.13989. 

Attempted Rearrangement of Epoxide ^ with Boron Tri fluoride Etherate 

Boron tri fluoride etherate (0.04 mL, 0.31 mmoles) was added to a 

solution of epoxide ^ (70 mg, 0.28 mmoles) in 1 mL of toluene cooled 

to -25 °C. The resulting light brown solution was stirred at -25 °C 

for 30 min, 0 °C for 1 h, and at ambient temperature for 1.5 h. It 

was then quenched by addition of saturated aqueous sodium bicarbonate 

solution (5 mL). Ether was added (20 mL) and the layers were 

separated. The organic layer was washed with bicarbonate (10 mL), 

water (10 mL), and brine (10 mL). The dried solution was filtered 

and concentrated. This afforded an intractible gum which thin-layer 

chromatography showed to be a mixture of many components. 
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Attempted Rearrangement of Epoxide ^ with Lithium Perch!orate 

A solution of epoxide 88, (81 mg, 0.32 mmoles) and anhyd lithium 

perchlorate (38 mg, 0.35 mmoles) in 2 mL of dry benzene was refluxed 

for 2 h. The cooled solution was diluted with ether (50 mL) and 

the combined organic material was washed with water (5 mL) and 

brine (5 mL). The dried solution was filtered and concentrated. 

This furnished 80 mg of recovered There was no hint of any other 

products by NMR or thin-layer chromatography. 

Attempted Rearrangement of Epoxide ^ with Sodium Iodide 

A solution of epoxide ^ (82 mg, 0.32 mmoles), ethyl iodide 

(0.13 mL, 1.6 mmoles), and sodium iodide (240 mg, 1.6 mmoles) in 

anhyd dimethyl sulfoxide (5 mL) was heated at 80 °C for 3 h. The 

cooled solution was diluted with water (10 mL) and extracted with 

ether (3 x 50 mL). The combined ether layers were washed with water 

(2 X 10 mL) and brine (2 x 10 mL). Concentration of the dried and 

filtered solution afforded 75 mg of recovered No other products 

were evidenced by NMR or thin-layer chromatography of the crude 

reaction product. 

Attempted Rearrangement of Epoxide M with Tin Tetrachloride 

Tin tetrachloride (0.025 mL, 0.21 mmoles) was added dropwise to 

a solution of the epoxide ^ (35 mg, 0.106 moles) in 2 mL of toluene 

cooled to 0 "c. Within 10 min, thin-layer chromatography evidenced 

several spots, such that the mixture was quenched by addition of 
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bicarbonate. Ether was added. The organic layer was washed with 

water (5 mL) and brine (5 mL). The dried solution was filtered and 

chromatographed. Examination of the NMR spectra of the crude product 

indicated that the major product was aldehyde This was evidenced 

by the characteristic singlets at 6 1.25 (3 H) and 9.85 (1 H). No 

spectral peaks (IR, NMR) characteristic of the desired ketone could 

be found. 

Rearrangement of Epoxide ^ 

The epoxide M (70 mg, 0.21 mmoles) was heated in 4 mL of anhyd 

toluene containing 190 mg (0.85 mmoles) of anhyd zinc bromide at a 

temperature of 80 °C for 3 h. The cooled solution was diluted with 

ether (100 mL) and washed with water (10 mL) and brine. The dried 

solution was filtered and concentrated. Examination of the 60 MHz 

NMR of the crude product demonstrated that it was almost entirely the 

aldehyde 93: NMR (CDClg) 6 1.25 (s, 3 H), 1.6-2.2 (m, 7 H), 3.87 (s, 

2 H), 4.0-4.3 (m, 5 H), 5.55 (m, 1 H), 9.85 (s, 1 H). 

(+)-(4aa, 8aa)-3,4-Dihydroxy-4,7-dimethyl-4a-acetoxymethyl-3,4,4a,5,-

6,8a-hexahydro-2H-l-benzopyran (9^) 

The epoxide 88 (60 mg, 0.24 mmoles) was refluxed in 5 mL of 4:1 

THF-water, containing 5 drops of 6 N HCIO^, for 4 h. The cooled solu

tion was diluted with ether (100 mL) and then washed with water (10 mL) 

and brine (10 mL). The dried (NagSO^) solution was filtered and 

concentrated. Examination of the residue proved that it consisted 
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entirely of diol 94: IR (film) 3450, 2970, 2940, 2850, 1720, 1280, 

1130 cm"!; 100 MHz NMR (CDCI3) 6 1.41 (s, 3 H), 1.68 (br s, 3 H), 

1.9-2.2 (m, 4 H), 2.06 (s, 3 H), 2.84 (br s, 2 H, -OH), 3.24 (m, 1 H), 

3.6-4.4 (m, 6 H), 5.48 (m, 1 H). 

Attempted Oxidation of Diol ^ 

Silver carbonate on Celite 

A suspension of 1.7 g (3 mmoles) of the silver carbonate-Celite 

reagent and 45 mg (0.15 mmoles) of diol M were refluxed in toluene 

(10 mL) with azeotropic removal of water (Dean-Stark trap). 

Filtration and removal of the solvent furnished unchanged M after 

12 h at reflux. 

Dimethylsulfoxide-acetic anhydride 

Acetic anhydride (0.3 mL) was added dropwise to a solution of 

M (40 mg, 0.135 mmoles) in 0.5 mL of dimethyl sulfoxide. The resulting 

solution was stirred at ambient temperature for 12 h without showing 

any change by thin-layer chromatography. 

N-Bromosuccinimide 

N-Bromosuccinimide (27 mg, 0.15 mmoles) and diol % (20 mg, 

0.074 mmoles) were mixed together in 2 mL of 10% aqueous dioxane at 

room temperature. After it had been stirred for 1 h, the solution was 

diluted with ether (150 mL). The organic material was washed with 

water (3 x 10 mL), 10% aqueous sodium bisulfite solution (10 mL), 

water (10 mL) and brine (10 mL). Filtration and concentration of the 
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dried solution afforded a light yellow oil which proved to be 1 spot 

by thin-layer chromatography. Examination of the NMR of the crude 

reaction product evidenced the loss of the C-9, C-10 olefin. A possi

ble explanation for this would be bromohydrin formation: 100 MHz NMR 

(CDCI3) 6 1.35 (two S, 3 H total), 1.54 (s, 3 H), 1.7-2.0 (m, 4 H), 

2.16 (s, 3 H), 3.76 (s, 2 H), 3.8-4.5 (m, 5 H). 

(±)-(4aa, 8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7-dimethyl-4a,5,-

6,8a-tetrahydro-2H-l-benzopyran-2-one-3-carbonitrile (8^) 

Cyanoacetyl chloride (15.53 g, 150 mmoles) in 50 mL of anhyd 

ether was added dropwise to a rapidly stirred solution of alcohol (80) 

(17.9 g, 60 mmoles) and pyridine (14.54 mL, 180 mmoles) in dichloro-

methane (120 mL) cooled to 0 °C under nitrogen. The mixture was 

stirred 15 min beyond the completion of addition, and then poured 

into 1 L of ether. The organic layer was washed consecutively with 

water (2 x 100 mL), 1 N HCl (2 x 100 mL), 1:1 bicarbonate-brine (2 x 

100 mL) and slightly acidic brine (100 mL). The dried solution was 

poured through a pad of 1:1 Celite(filter aid)-silica gel (50 gn) and 

the solvents were then removed to afford pure cyanoester 8^ (22 g, 

100%). 

The cyanoacetate (20.2 g, 80 mmoles) and l,5-diazobicyclo[4.3.Ô]-

non-5-ene (1.0 mL, 8 mmoles) were heated to reflux in benzene (150 mL) 

with azeotropic removal of water. After 30 min, the solution was 

cooled, diluted with ether (500 mL) and washed with 1 N HCl (2 x 300 

mL), bicarbonate (2 x 300 mL) and slightly acidic brine (100 mL). 
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Filtration and concentration of the dried solution gave a crude solid 

which was recrystallized from 50:1 hex-EtOAc yielding 18.15 g (52.3 

mmoles) of light yellow crystals (mp 145-6 °C). Chromatography 

(SiOg, 10:1 hex-EtOAc) of the mother liquors afforded a further 2.81 g 

(7.7 mmoles) of crystals (60 mmoles total, 75%): IR (film) 2980, 2240, 

1735, 840 cm"T; 100 MHz NMR (CDCI3) 6 0.10 (s, 6 H), 0.88 (s, 9 H), 

1.74 (br s, 3 H), 1.9-2.1 (m, 4 H), 2.37 (s, 3 H), 3.68, 3.86 (AB 

quartet, J = 11 Hz, 2 H), 4.97 (m, 1 H), 5.43 (m, 1 H); 90 MHz C-13 

NMR (CDClg) 17.948, 18.598, 22.630, 25.231, 26.857, 43.830, 65.865, 

76.510, 108.081, 113.283, 118.486, 140.011, 158.48, 174.998. Anal, 

calcd. for C^gHggNOgSi: C, 65.71; H, 8.36. Found C, 65.79; H, 8.28. 

(+)-(4aa, 8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7-dimethyl-4a,5,-

6,8a-tetrahydro-2H-l-benzopyran-3-carbonitrile (^) 

Diisobutyl aluminum hydride (21.7 mL of a 1.0 M hexane solution) 

was added dropwise to a stirred solution of lactone (6.85 g, 19.74 

mmoles) 84b in 85 mL of toluene cooled to -78 °C under nitrogen. 

The light brown solution was stirred a further 60 min after addition 

was complete, and then poured into a rapidly stirred mixture of acetic 

acid (25 mL) and ice (100 g). Chloroform (500 mL) was added, followed 

by 1 N HCl (100 mL). Stirring was continued until both layers 

clarified (2-3 h). The layers were separated and the organic layer 

was washed with 1 N HCl (100 mL), bicarbonate (2 x 100 mL), and 

brine (100 mL). The dried solution was filtered through a pad of 1:1 

silica gel-Celite (50 g) and the solvents removed under reduced pressure. 
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The crude lactols were dissolved in dichloromethane (60 ml) and 

cooled to -78 °C under nitrogen. Triethylsilane (3.40 g, 29 mmoles) 

was added, followed by dropwise addition of boron trifluoride-

etherate (2.64 mL, 21.5 mmoles). The reaction mixture was stirred 

for 15 min beyond the completion of addition, and then bicarbonate 

(25 mL) was added with vigorous stirring and the cooling bath was 

removed. On attainment of room temperature, the two phase system 

was poured into ether (300 mL) and the organic layer was washed with 

bicarbonate (50 mL) and brine (50 mL). The dried solution was 

filtered and concentrated. This provided a crude yellow oil, which 

was chromatographed (silica gel, 25:1 hex-EtOAc) to provide two 

major products, nitrile ̂  (4.27 g, 65%); (4:1 hex-EtOAc) = 0.50, 

mp 75-6 °C from hexanes: IR (film) 2980, 2880, 2205, 1120 cm"^ ; 

100 MHz NMR (CDClg) 6 0.10 (s, 6 H), 0.91 (s, 9 H), 1.72 (br s, 3 H), 

1.8-2.0 (m, 4 H), 2.07 (t, J = 2 Hz, 3 H), 3.57, 3.70 (AB quartet, J = 

10 Hz, 2 H), 4.16 (m, 3 H), 5.44 (m, 1 H). High-resolution mass 

spectrum for C^gH2202NSi (P-57 = 276) requires m/e^ 276.14103; found 

m/£ 276.14199, and aldehyde 96 (0.91 g, 9.3%), R^ (4:1 hex-EtOAc) = 

0.40 as a colorless oil: IR (film) 2950, 2920, 2850, 2740, 1708, 

1655, 1240, 1090, 825 cm'^ 100 MHz NMR (CDCI3) 6 0.10 (s, 6 H), 0.90 

(s, 9 H), 1.73 (br s, 3 H), 1.9 (m, 4 H), 2.23 (t, J = 1.5 Hz, 3 H), 

3.63, 3.78 (AB quartet, 2 = 11 Hz, 2 H), 4.12 (br s, 1 H, collapses 

to d, ^ = 3 Hz on irradiation at 6 1.73), 4.27 (m, 2 H, collapses to 

AB quartet, 4.20, 4.36, ^ = 16 Hz on irradiation at 6 2.23), 5.46 

(br s, 1 H, collapses to d, ^ = 3 H on irradiation at 6 1.73), 10.10 
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(s, 1 H); 90 MHz C-13 NMR (CDClg) ô -5.656, 11.901, 18.144, 23.086, 

25.167, 25.752, 27.378, 42.855, 61.908, 64.835, 71.142, 120.499, 134.22, 

139.293, 156.590, 189.495. High-resolution mass spectrum for 

^19^32^3^^' rsAuires m/e, 336.21208; found m/e_ 336.21201. 

(±)-(4aa, 8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7-dimetliyl-4a,5,-

6,8a-tetrahydro-2H-l -benzopyran-3-carboxal dehyde 

To a 0.3 M toluene solution of ni tri le ̂  (2.98 g, 8.95 mmoles) 

cooled to -78 °C under nitrogen was added 9.0 mL of a 1.0 M hexanes 

solution of diisobutyl aluminum hydride. Thirty minutes after addi

tion was complete, the solution was poured into a rapidly stirred 

slurry of acetic acid (10 mL) and ice (25 g). Chloroform (200 mL) 

and 1 N HCl (25 mL) were added and vigorous stirring continued until 

both layers clarified. The layers were separated and the organic 

layer was washed with bicarbonate (50 mL) and brine (50 mL). Drying 

and removing the solvents afforded 2.82 g of aldehyde 96 as a colorless 

oil which was used without purification. (94% from nitrile 70% 

overall from lactone 8;^.) 

(+)-(4aa, 8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7-dimethyl-4a,5,-

6,8a-tetrahydro-2H-l-benzopyran-3-carboxylic acid (97) 

A solution of sodium chlorite (1.41 g of commercial 85%, 12.5 

mmoles) in 10 mL of NaHgPO^ pH 3.5 buffer was added dropwise to a 

rapidly stirred solution of aldehyde ^ (3.36 g, 10 mmoles) and 2-

methyl-2-butene (10.6 mL, 100 mmoles) in 50 mL of tert-butanol at room 
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temperature. The resulting light yellow solution was stirred 8 h at 

ambient temperature. It was made basic with 6 N NaOH (pH 10) and the 

tert-butanol removed at reduced pressure. The residue was dissolved 

in water and was extracted twice with hexanes. The water layer was 

acidified (6 N HCl, pH 3) and extracted twice with ether (100 ml). 

The organic layer was washed with water (25 ml) and brine (25 mL). 

Concentration of the dried organic layer furnished a colorless solid 
I 

which was recrystallized from hexanes to provide 2.5 g of colorless 

plates (mp 143-5 °C). Chromatography (silica gel, 5:1 hex-EtOAc) 

provided a further 0.35 g of crystals (2.85 g total, 80%): IR (film) 

3400, 2970, 1700 cm"^ 100 MHz NMR (CDCI3) 0.10 (s, 6 H), 0.91 (s, 9 H), 

1.72 (br s, 3 H), 1.8-2.0 (m, 4 H), 2.17 (t, J = 2 Hz, 3 H), 3.56, 3.78 

(AB quartet, ^=11 Hz, 2 H), 4.22 (br s, 1 H, collapses to d, ^ = 4 

Hz on irradiation at 1.73 ), 4.32 (m, 2 H), 5.46 (br s, 1 H, collapses 

to d, ^ = 4 Hz on irradiation at 6 1.73), 7.2 (br s, 1 H, -OH). 

Anal, calcd. for C^gH^gO^Si: C, 64.77; H, 9.09. Found: C, 64.90; 

H, 9.20. 

(+)-(4aa, 8aa)-4a-tert-Buty 1 dimethylsilylox.ymethy 1 -4,7-dimethyl-4a,5,-

6,8a-tetrahydro-2H-l-benzopyran-3(4H)-one (98§) 

Ethyl chloroformate (neat, 0.5 mL, 5.2 mmoles) was added to a 0 °C 

THF (10 mL) solution of acid ̂  (1.3 g, 3.95 mmoles) and triethyl amine 

(0.66 mL, 4.75 mmoles) under nitrogen. The resulting suspension was 

stirred 60 min, and then sodium azide (0.51 g, 8.0 mmoles) in 3 mL of 

water was added dropwise. The initially homogeneous solution was 
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stirred 3 h at 0 °C, before being partitioned between toluene (50 mL) 

and water. The organic layer was washed with water (10 mL), brine 

(10 mL) and dried briefly over MgSO^. 

The filtered solution was concentrated to approximately 25 mL 

and heated at reflux for 30 min to effect rearrangement to the 

isocyanate. The toluene was removed under reduced pressure and 

replaced with 20 mL of THF. NaOH (5 mL of 1 N) was added and the 

two-phase system stirred vigorously for 2 h. After cooling to 0 °C, 

6 N HCl was added to pH 3 and stirring continued a further 2 h. The 

inhomogeneous mixture was poured into ether (100 mL) and the organic 

material was washed with bicarbonate (15 mL), water (10 mL) and 

brine. Filtration and concentration of the organic layer afforded a 

crude yellow oil, which was chromatographed (silica gel, 20:1 hex-

EtOAc) to provide 0.79 g (62%) of ketone 9^ as a mixture of 

diastereomers. (3:1 hex-EtOAc) minor isomer = 0.60, major = 0.55: 

IR (film) 2950, 2860, 1730, 1095 cm'^ 100 MHz NMR (CDClg) (major 

isomer) 5 0.10 (s, 6 H), 0.89 (s, 9 H), 1.13 (d, J = 7 Hz, 3 H), 

1.7-2.0 (m, 7 H), 2.52 (q, J = 7 Hz, 1 H), 3.34, 3.48 (AB quartet, 

J = 10 Hz, 2 H), 3.9-4.1 (m, 3 H), 5.55 (m, 1 H); 90 MHz C-13 NMR 

(CDClg) -5.787, 6.698, 18.143, 23.411, 25.752, 26.922, 28.483, 43.505, 

47.277, 64.250, 73.355, 74.256, 120.697, 138.841, 211.546. High-

resolution mass spectrum for C^^HggOgSi (loss of C^Hg) requires m/£ 

267.14165; found m/e 267.14106. 
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(±)-(4aa, 8aa)-4,7-Dimethyl-4a-hyclroxyinethyl-4a,5,6,8a-tetrahydro-2H-

l-benzopyran-3(4H)-one {JZ) 

The silyl ether ^ (0.56 g, 1.73 mmoles) and tetra-ji-butyl 

ammonium fluoride (4.7 mL of an 0.75 M THF solution, 3.5 mmoles) were 

stirred at room temperature for 2 h. The light yellow solution was 

poured into ether (100 mL) and washed with bicarbonate (15 mL) and 

brine (10 mL). Concentration of the dried solution provided a light 

yellow oil which was chromatographed (silica gel, 5:1 hex-EtOAc) to 

provide 0.308 g (85%) of alcohol 72 as a colorless oil: (3:1 

benzene-acetone) = 0.27; IR (film) 3450, 1720, 1090 cm"^; 100 MHz NMR 

(CDClg) (major isomer) 6 1.16 (d, ^ = 7 Hz, 3 H), 1.5-2.2 (m, 7 H), 

2.60 (q, J = 7 Hz, 1 H), 3.55 (m, 2 H), 4.0 (m, 2 H), 4.26 (br s, 1 H), 

5.52 (br s, 1 H). High-resolution mass spectrum for C^gH^gOg requires 

210.12560; found m/£ 210.12605. 

(+)-(4aa, 7a, 8ag)-4,7-Dimethyl-4a,7-ethano-4a,7,8,8a-tetrahydro-2H,-

5H-pyrano[4,3-b]pyran-3(4H)-one (99) 

Phenylselenyl chloride (0.086 g, 0.56 mmoles) in dichloromethane 

(1.0 mL) was added dropwise to a solution of keto alcohol 72 in dichloro

methane (2.0 mL) cooled to -78 °C under nitrogen. At the completion 

of addition, the cooling bath was removed and the light orange solution 

allowed to warm to room temperature. Removal of solvents and 

chromatography (silica gel, 10:1 hex-EtOAc) afforded the crude 

selenide which was dissolved in toluene (5 mL) and heated to reflux 
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with tri-rv-butyltin hydride (0.22 mL, 0.82 mmoles) and a catalytic 

amount of azo-bis-isobutyryl nitrile. After 60 min, the solution was 

cooled to room temperature. Concentration and chromatography (silica 

gel, 10:1 hex-EtOAc) provided ether 99 as a colorless oil. = 9.38 

min (175 °C, isothermal, 6 ft x % in, 5% SE 30 capillary column gas 

chromatograph): IR (film) 2960, 1725, 1150 cm"S 100 MHz NMR (CDClg) 

s 0.98 (d, J = 7 Hz, 3 H), 1.14 (s, 3 H), 1.3-1,8 (m, 6 H), 2.30 

(q, 2 = 7 Hz, 1 H), 3.60 (m, 1 H), 4.1 (m, 4 H). High-resolution mass 

spectrum for G^gHigOg requires m/e_ 210.12560; found m/£ 210.12685. 

2-Methyl-2-(1-bromo-2-ethoxy-2-ethyl)-1-cyclohexanone (lOJ) 

To a solution of bromoacetaldehyde diethyl acetal (0.75 mL, 

5 moles) and titanium tetrachloride (0.55 mL, 5 mmoles) in dichloro-

methane (20 mL) cooled to -78 °C under nitrogen was added 2-methyl-l-

trimethylsilyloxy-l-cyclohexene 66 (920 mg) in dichloromethane (5 mL). 

The resulting bright red solution was stirred two hours. Water was 

added (1 mL), followed by 10% aqueous potassium carbonate (1 mL). 

After it was warmed to ambient temperature, the mixture was poured into 

ether (100 mL) and the organic material was washed with water (10 mL) 

and brine (10 mL). The dried (NagSO^) solution was filtered and the 

solvents were removed at reduced pressure. The residue was subjected 

to rapid column chromatography (hexanes-ethyl acetate, silica gel), 

affording 608 mg (2.5 mmoles, 50%) of l^Ol as a colorless oil: IR 

(film) 2980, 2940, 2855, 1715, 1100 cm'^; NMR (COCI3) 6 1.08 (s, 3 H), 

1.20 (t, J = 7 Hz, 3 H), 1.7-2.5 (m, 8 H), 3.2-4.1 (m, 5 H). 
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3-Methyl-3-(2-methoxymethyloxy-1-thiobutyl-2-ethyl)-2-oxo-l-cyclo-

hexane Carboxylic Acid, Methyl Ester (IW) 

To a -78 °C solution of lithium diisopropylamide (2.1 mmoles) in 

3 mL of anhyd tetrahydrofuran (THF) was added 2-carbomethoxy-6-

methylcyclohexanone (170 mg, 1.0 mmole) in 1 mL of THF. After 20 min, 

jvbutyl thioacetaldehyde (132 mg, 1.0 mmole) was added as a 1.0 M THF 

solution. After 10 min, the solution was poured into NH^Cl/NH^OH 

pH 7 buffer solution (10 mL). The aqueous layer was extracted with 

ether (3 x 25 mL) and the combined ether layers were washed with 

water (10 mL) and brine (10 mL). The dried solution was filtered and 

the solvents were removed at reduced pressure. The residue was 

dissolved in anhyd dichloromethane (2 mL). Diisopropylethyl amine 

(0.26 mL, 1.5 mmoles) and chloromethyl methyl ether (0.11 mL, 1.5 

mmoles) were added. The solution was stirred for 3 h. It was poured 

into ether (100 mL) and the ether layer was washed with water (10 mL) 

and brine (10 mL). The dried (NagSO^) solution was concentrated and 

the residue chromatographed on silica gel (hexanes-ethyl acetate), 

affording 270 mg (78%) of 1^ as a colorless oil: IR (film) 2950, 

2870, 1740, 1715, 1650, 1620, 1450, 1020 cm'^; NMR (CDCI3) 0.8-1.2 

(m, 3 H), 1.3 (s, 3 H), 1.3-2.7 (m, 15 H), 3.35 and 3.40 (two s, 3 H 

total), 3.72 (s, 3 H), 4.7 (m, 3 H). 

2-Methyl-2-(2-methoxymethyloxy-1-thiobutyl-2-ethyl )cyclohexan-1-one (1^) 

A mixture of 103 (314 mg, 0.91 mmoles) and Dabco (1,4-diazabi-

cyclo[2.2.2]octane, 610 mg, 5.45 mmoles) were stirred together in 
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refluxing xylenes until thin-layer chromatography evidenced that all 

starting material had been consumed. Concentration and silica gel 

chromatography afforded 102 (130 mg, 45%) as a mixture of diastereomers: 

IR (film) 2950, 2860, 1715, 1050 cm"!; NMR (CDCI3) (major) 0.9-1.1 

(m, 3 H), 1.17 (s, 3 H), 1.3-2.0 (m, 10 H), 2.4-2.9 (m, 6 H), 3.33 

(s, 3 H), 4.22 (m, 1 H), 4.54 and 4.98 (AB, J = 7 Hz, 2 H). 

2-(2-Methyl-cyclohexan-l-one) Acetic Acid, Ethyl Ester (104) 

Methyl lithium (0.69 mL of a commercial 1.45 M ether solution) was 

added to a 0.5 M ether solution of 2-methyl-l-trimethylsilyloxy-l-

cyclohexene (184 mg, 1.0 mmole) at room temperature under nitrogen. 

The resulting solution was stirred for 60 min, and then the ether was 

removed under vacuum. The flask was pressurized with nitrogen and dry 

1,2-dimethoxyethane (2 mL) was added. The suspension was cooled to 

0 °C and ethyl iodoacetate (280 mg, 1.3 mmoles) in 1.0 mL of 1,2-

dimethoxyethane was added all at once. When the vigorous reaction had 

subsided, the suspension was poured into ice-water. The aqueous layer 

was extracted with ether (3 x 50 mL) and the combined ether layers were 

washed with water (10 mL) and brine (10 mL). The dried solution was 

filtered and the filtrate was concentrated. The residue was purified by 

bulb to bulb distillation, affording 101 mg (50%) of IM as a colorless 

oil (bp 105-110 °C/1 mm Hg, lit. (68) bp 59-61 °C/0.1 mm Hg). 
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3-Ethoxy-3aa-niethyl-2,3,3a,4,5,6-hexahydro-benzofuran (106) 

Ketone 101 (205 mg, 0.83 mmoles) in benzene (1 mL) was added drop-

wise to a suspension of potassium tert-butoxide/tert-butanol (1:1 

complex) in benzene (2 mL) at room temperature. This mixture was 

stirred at that temperature for 25 m1n, and then acidified with ice 

cold 1 N HCl. It was poured into ether (100 mL) and the organic layer 

was washed with water (10 mL) and brine (10 mL). The dried solution 

was filtered and concentrated, affording 106 as the sole product: IR 

(film) 2980, 2935, 2885, 1695, 1380, 1110, 1005 cm"^ 100 MHz NMR 

(CDCI3) 6 1.13 (s, 3 H), 1.18 (t, 3 H), 1.4-2.2 (m, 6 H), 3.4-4.2 (m, 

4 H), 4.68 (m, 1 H). 

3-Methoxymethyl-3aa-methyl-2,3,3a,4,5,6-hexahydro-benzofuran-7-carboxyl i c 

Acid, Methyl Ester (108) 

Methyl iodide (0.065 mL, 1.0 mmole) was added to a solution of 103 

(350 mg, 1 mmole) in nitromethane at room temperature. The solution 

was stirred at ambient temperature for 12 h and then the solvent was 

removed under reduced pressure. The crude sulfonium salt was dissolved 

in methanol and magnesium methoxide (2.6 mL of a 0.42 M solution) was 

added dropwise. The solution was stirred at ambient temperature for 

5 h, and then it was acidified with 1 N HCl. The methanol was removed 

under reduced pressure and the residue was partitioned between ether (100 

mL) and water (10 mL). The aqueous layer was extracted with ether (2 x 

25 mL) and the combined ether layers were washed with water (10 mL) and 

brine (10 mL). The dried (Na2S04) solution was filtered and concentrated. 
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The residue was chromatographed (silica gel, hexanes-ethyl acetate), 

providing 150 mg (59%) of enpl ether l^Op as a colorless oil: IR (film) 

2950, 1720, 1680, 1440, 1050 cm"^ 100 MHz NMR (CDCI3) 6 1.20 (s, 3 H), 

1.55 (dt, J = 3, 1 Hz, 1 H), 1.7-1.9 (m, 2 H), 1.97 (dt, J = 1, 3.5 

Hz, 1 H), 2.33 (m, 2 H), 3.38 (s, 3 H), 3.74 (s, 3 H), 3.96 (d, J = 

3 Hz, 1 H), 4.35 (d, J = 11 Hz, 1 H), 4.54 (dd, J = 11, 3 Hz, 1 H), 

4.60 (d, J = 7 Hz, 1 H), 4.67 (d, J = 7 Hz, 1 H). 

l-Hydroxy-3-methyl-bicyclo[3.2.l] octan-8-one (113) 

Ozone was passed through a gas dispersion tube into a 0.1 M 

methylene chloride (CHgClg) solution of 2-allyl-2-methyl-l-cyclohexanone 

(400 mg, 2.63 mmoles) cooled to -78 °C. When the solution had assumed 

a bright blue color, the stream of ozone was replaced by a stream of 

nitrogen until the solution was colorless. Triphenylphosphine (690 mg, 

2.63 moles) was added and the solution was allowed to warm to ambient 

temperature overnight. The solution was diluted with a large volume 

of hexanes and filtered. Removal of the solvents afforded the crude 

keto aldehyde (105), which was immediately subjected to sodium methoxide 

(1.3 mL of a 2.0 M solution) in refluxing methanol (5 mL). After it 

was refluxed for 30 min, the solution was acidified with dilute HCl and 

the methanol was removed at reduced pressure. The residue was 

partitioned between ether (100 mL) and water (10 mL). The organic 

layer was washed with water (5 mL) and brine (5 mL). The dried solution 

was filtered and concentrated. Chromatography (silica gel, hexanes-

ethyl acetate) afforded 220 mg (55%) of ketol 113 as a colorless oil: 
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IR (film) 3450, 2980, 2870, 1760 cm"^ NMR (CDClg) 1.04 and 1.08 (two 

s, 3 H total), 1.3-2.6 (m, 9 H), 3.3 (br s, 1 H, -OH), 4.3 (m, 1 H). 

3-Methyl-bicyclo[3.2.f) octan-1,8-dione (IM) 

Ketol 1^ (82 mg, 0.53 mmoles) in dry toluene (1 mL) was added 

dropwise to a suspension of N-chlorosuccinimide (107 mg, 0.8 tiinoles) 

and dimethyl sulfide (0.08 mL, 1 mmole) in dry toluene (3 mL) cooled to 

-25 °C (Dry Ice-carbon tetrachloride bath). The resulting solution was 

stirred 2 h at that temperature and then triethyl amine (0.11 mL, 

0.80 mmoles) in 0.5 mL of dry toluene was added. The cooling bath was 

removed and the solution was allowed to warm to ambient temperature. 

It was diluted with ether (150 mL) and the organic material was washed 

with 0.1 M HCl (5 mL), water (10 mL), and brine (10 mL). Chromatography 

afforded 70 mg (85%) of 1_14 as a colorless oil which solidified on 

standing: IR (film) 1760, 1740, 1200 cm"S 100 MHz NMR (CDClg) 6 1.22 

(s, 3 H), 1.7-2.3 (m, 6 H), 2.38 (dd, 18, 1.5 Hz, 2 H, C-2 exo 

hydrogen), 2.70 (d, ^ = 18 Hz, C-2 endo hydrogen), 2.77 (m, IH); 90 MHz 

C-13 NMR (CDCI3) 5 18.661, 18.857, 36.742, 43.570, 50.072, 50.918, 

59.372, 209.788, 216.096. 

(+)-(4aa,8aa)-4a-tert-Butyldimethylsilyloxymethyl-4,7-dimethyl-3-tri-

methylsilyloxy-4a,5,6,8a-tetrahydro-2H-l-benzopyran (115) 

lodotrimethylsilane (0,08 mL, 0.55 rmioles) was added dropwise to 

a solution of hexamethyldisilazane (0.13 mL, 0.60 mmoles) and 98a 

(160 mg, 0.50 mmoles) in dichloromethane (CHgClg) cooled to -25 °C 
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under nitrogen. The resulting solution was stirred for 20 min at 

-25 °C and 4 h at ambient temperature. It was then partitioned between 

hexanes (75 ml) and aqueous sodium bicarbonate (25 mL). The organic 

layer was washed with saturated aqueous bicarbonate (10 mL) and brine 

(10 mL). The dried solution (NagSO^) was filtered and concentrated, 

furnishing the crude mixture of silyl enol ethers. (An approximately 

95;5 mixture of 1JI5, and ^6 by gas chromatography on a 30 M by 0.25 mm 

SEC capillary column, 175 °C): 100 MHz NMR (CDClg) S 0.10 (s, 6 H, 

0.16 (s, 9 H), 0.92 (s, 9 H), 1.58 (t, J = 2 Hz, 3 H), 1.68 (br s, 

3 H), 1.7-2.0 (m, 4 H), 3.48, 3.70 (AB q, J = 10 Hz, 2 H), 3.84 (m, 

2 H), 4.28 (m, 1 H), 5.36 (m, 1 H). 

(+)-(4aa,8aa)-4,7-Dimethyl-4a-hydroxymethyl-4a,5,6,8a-tetrahydro-2H-l-

benzopyran-3(4H)-one, Bromoacetate (98b) 

Bromoacetyl bromide (0.78 mL, 9 mmoles) was added dropwise to a 

rapidly stirred, 0 °C solution of alcohol 7g (757 mg, 3.6 mmoles) 

and pyridine (1.02 mL, 12.6 mmoles) in dichloromethane (10 mL). The 

resulting suspension was stirred at 0 °C for 20 min and poured into 

ether (200 mL). The ether layer was washed with water (2 x 25 mL), 

1 N HCl (25 mL), saturated aqueous sodium bicarbonate (2 x 15 mL), and 

brine (15 mL). The dried solution was filtered and concentrated. The 

residue was chromatographed (silica gel, hexanes-ethyl acetate), 

affording 1.01 g (85%) of ^ as a colorless oil: IR (film) 2980, 2950, 

2880, 1760 (sh), 1740, 1725, 1275, 1155 cm"^ 100 MHz NMR (CDCI3) 1.05 
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(d, J = 7 Hz, 3 H), 1.6-2.1 (m, 7 H), 2.65 (q, J = 7 Hz, 1 H), 3.77 

(s, 2 H), 3.8-4.3 (m, 5 H), 5.53 (m, 1 H). 

(±)-(4aa,8aa)-4a-Acetic acid-4e,7-dimethy1-4a-hydroxymethyl-4a,5,6,8a-

tetrahydro-2H-l-benzopyran-4(4H)-one, fi-lactone (1^8) 

lodotn'methylsilane (0.52 mL, 3.65 mmoles) was added dropwise to 

a solution of hexamethyldisilazane (1.01 mL, 4.79 mmoles) and bromo-

acetate 98b (1.27 g, 3.84 mmoles) in dichloromethane (40 mL) cooled to 

-25 °C under nitrogen. The resulting solution was stirred for 50 min 

at that temperature. It was then partitioned between hexanes (150 mL) 

and saturated aqueous sodium bicarbonate (20 mL). The organic layer was 

washed with bicarbonate (2 x 10 mL) and brine (20 mL). The dried solu

tion was filtered and concentrated. The residue (consisting primarily 

of silyl enol ether 1J7) was used without purification: 100 MHz NMR 

(CDCI3) 6 0.2 (s, 9 H), 1.61 (t, J = 1.5 Hz, 3 H), 1.68 (br s, 3 H), 

1.7-1.9 (m, 4 H), 3.82 (s, 2 H), 3.87 (m, 2 H, collapses to AB q, 6 3.78, 

3.94, J = 16 Hz), 4.2 (m, 3 H), 5.36 (m, 1 H); IR (film) 2960, 2900, 

2840, 1740, 1695, 1685, 1250, 1110, 1090, 840 cm"^ 

The crude silyl enol ether IJJ (3.8 mmoles) in 4 mL of anhyd tetra-

hydrofuran (THF) was added dropwise to a -78 °C THF (40 mL) solution of 

tetra-ji-butylammonium fluoride (4.2 mL of a 1.0 M THF solution). 

The resulting solution was stirred for 15 min at -78 °C, after which 

the cooling bath was removed. After stirring at ambient temperature 

for 10 h, the solution was poured into ether (200 mL). It was washed 

with saturated aqueous sodium bicarbonate (2 x 25 mL) and brine (25 mL). 
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The dried solution was filtered and concentrated. Chromatography of 

the residue afforded 430 mg (47%) of lactone ns as a colorless oil 

which solidified on standing. Recrystallization from ether furnished 

colorless crystals (mp 102-3 °C): IR (film) 2960, 2850, 1755, 1725, 

1450, 1385, 1100, 735 cm'^ 100 MHz NMR (CDClg) 5 1.37 (s, 3 H), 1.80 

(br s, 3 H), 2.1 (m, 4 H), 2.28 and 3.14 (AB q, J = 16 Hz, 2 H), 3.55 

(m, 1 H, collapses to d, ^ = 5 Hz on irradiation at 6 1.80), 3.84 and 

3.94 (AB q, J = 12 Hz, 2 H), 4.13 and 4.43 (AB q, J = 18 Hz, 2 H), 

5.51 (m, 1 H, collapses to d, iJ = 5 Hz on irradiation at 6 1.80); 

90 MHz C-13 NMR (CDClg) 6 21.913, 22.565, 23.215, 26.597, 36.222, 40.839, 

49.226, 69.516, 73.158, 74.718, 118.224, 140.530, 171.550, 211.999. 

High-resolution mass spectrum for C^^H^gO^ requires m/^ 250.12167; 

found m/e, 250.12051. 

(+)-(4aa,8aa)-4a-tert-Buty1dimethylsilyloxymethyl-4a-acetic acid-46,7-

dimethyl-4a,5,6,8a-tetrahydro-2H-l-benzopyran-3(4H)-one, Methyl Ester (1%) 

Lithium hydroxide-monohydrate (135 mg, 3.21 mmoles) was added to a 

solution of keto-lactone 1,18 (267 mg, 1.07 mmoles) in 5 mL of 4:1 THF-

water at room temperature. The two-phase system was stirred vigorously 

at ambient temperature for 30 min and then cooled to 0 °C. It was 

acidified (pH 5) with ice-cold saturated aqueous NaHgPO^ (pH 3.5) buffer, 

followed by addition of diazomethane (17.5 mL of an 0.2 M ether solution). 

When gas evolution had subsided, the mixture was partitioned between 

ether (100 mL) and water (20 mL). The layers were separated and the 

organic layer was washed with water (15 mL) and brine (15 mL). The 
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dried solution was filtered and concentrated. The crude hydroxy-ester 

1^ was dissolved in dry acetonitrile (3 mL) and added dropwise to a 

stirred solution of pyridine (0.25 mL, 3 mmoles) and tert-butyldimethyl-

silyl perchlorate (freshly prepared, 574 mg, 2.67 mmoles) in 3 mL of 

dry acetonitrile cooled to 0 °C under nitrogen. The resulting solu

tion was stirred at 0 °C for 1.5 h and at ambient temperature for 2 h. 

The solution was poured into hexanes (150 mL) and the hexanes suspension 

was washed with saturated aqueous sodium bicarbonate (3 x 15 mL) and 

brine (10 mL). The dried solution was filtered and concentrated. 

The residue was chromatographed (silica gel, hexanes-ethyl acetate), 

affording 390 mg (91%) of keto-ester 122 as a colorless oil: = 

0.48 (3:1 hexanes-ethyl acetate); IR (film) 2960, 2930, 2860, 1740, 

1725, 1470, 1255, 1110, 840 cm'^; 100 MHz NMR (CDCI3) 6 0.10 (s, 6 H), 

0.90 (s, 9 H), 1.37 (s, 3 H), 1.7-2.0 (m, 7 H), 2.68 and 3.26 (AB q, 

J = 14 Hz, 2 H), 3.54 (s, 2 H), 3.63 (s, 3 H), 4.02 (m, 1 H), 4.11 

(s, 2 H), 5.45 (m, 1 H); 90 MHz C-13 NMR (CDClg) ô -5.911, 17.756, 

23.220, 23.545, 25.561, 26.602, 39.218, 43.835, 51.313, 51.638, 63.343, 

70.301, 71.732, 119.855, 138.974, 172.400, 211.994. 

(+)-(4aa,8aa)-4a-tert-Butyldimethylsilyloxymethyl-4a- [l -(2-hydroxyethyl)] -

4g,7-dimethyl-3-hydroxy-3,4,4a,5,6,8a-hexahydro-2H-l-benzopyran (123) 

Keto ester 1^ (125 mg, 0.315 mmoles) in ether (2 mL) was added 

dropwise to a suspension of lithium aluminum hydride (60 mg, 1.58 mmoles) 

in ether (3 mL) at ambient temperature. The mixture was stirred for 2 

d at that temperature, and then water (3 drops) was added (causing 
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vigorous gas evolution). When the gas evolution was complete, 15% 

aqueous NaOH (3 drops) was added, followed by addition of 9 drops of 

water. The slurry was stirred vigorously until the aluminum salts 

solidified and separated. Ether was added (25 mL) and the mixture was 

filtered through Celite (filter aid). After a thorough washing of the 

aluminum salts with ether, the combined ether layers were dried, 

filtered, and concentrated. The residue crystallized on standing and 

was recrystallized from chloroform, furnishing 90 mg (83%) of diol 

123 as colorless crystals (mp 145-7 °C): IR (Nujol) 3430, 2970, 2890, 

1255, 840, 775 cm'^ 100 MHz NMR (CDCI3) 6 0.10 (s, 6 H), 0.94 (s, 

9 H), 1.25 (s, 3 H), 1.73 (br s, 3 H), 1.8-2.2 (m, 6 H), 3.4-4.1 (m, 

10 H), 5.49 (m, 1 H). High-resolution mass spectrum for C^gHggO^ 

(p-57) requires m/e 313.18403; found m/ie 313.18352. 

(+)-(4aa,8aa)-4a-tert-buty1di methylsilyloxymethyl-4a-ethanol-4e,7-

dimethyl-4a,5,6,8a-tetrahydro-2H-l-benzopyran-3(4H)-one (1_M) 

Dimethyl sulfoxide (0.10 mL, 1.36 mmoles) was added dropwise to a 

solution of oxalyl chloride (0.06 mL, 0.68 nrooles) in dichloromethane 

(2 mL) cooled to -60 °C. After 3 min, diol 1^ (106 mg, 0.31 moles) 

in dichloromethane (2 mL) was added dropwise. The mixture was stirred 

for 16 min and then triethylamine (0.43 mL, 3.1 mmoles) in dichloromethane 

(0.5 mL) was added slowly. The resulting suspension was stirred for 

5 min at -60 °C and 30 min at room temperature. Water (5 mL) was 

added with vigorous stirring and, after 1 min, the mixture was 

partitioned between ether (150 mL) and water (25 mL). The organic 



www.manaraa.com

107 

layer was washed with water (10 mL), 1 N HCl (10 mL), and brine (10 mL). 

The dried solution was filtered and concentrated. Examination of the 

infrared and 100 MHz NMR spectra of the crude residue indicated that 

it was a mixture of keto-aldehyde and the hydrated form: IR 

(film) 3430, 2960, 2930, 2860, 1730, 1715, 1255, 1080, 990, 830 cm"\ 

3a.s-Hvdroxv-15-tert-butvldimethyl siIvloxy-13-nor-trichothec-9-en-12-one 

(125) 

Keto aldehyde 124 (110 mg, 0.32 moles) in 3 mL of dry methanol was 

refluxed with sodium methoxide (0.2 mL of a 2 M solution) for 1 h. The 

cooled solution was acidified (pH 5) and the solvent was removed at 

reduced pressure. Water (10 mL) was added and the mixture was extracted 

with ether (2 x 60 mL). The combined ether layers were washed with 

water (10 mL) and brine (10 mL). The dried solution was filtered and 

concentrated. The residue was chromatographed (silica gel-ethyl 

acetate), furnishing 70 mg (63%) of tricyclic ketol 1^ as a colorless 

oil: IR (film) 3420, 2960, 2940, 2870, 1760, 1260, 1095, 830 cm"S 

100 MHz NMR (CDCI3) 5 0.10 (s, 6 H), 0.93 (s, 9 H), 1.18 (s, 3 H), 

1.3-2.1 (m, 9 H), 3.2-3.7 (m, 4 H), 4.06 (d, J = 5 Hz, 1 H), 4.34 (m, 

1 H), 5.50 (m, 1 H). 

15-tert-Butyldimethylsilyloxy-13-nor-trichothec-9-en-3,12-dione ( 1^) 

The ketol 1^ (45 mg, 0.133 mmoles) was dissolved in dichloromethane 

(1 mL) and added rapidly to a stirred solution of pyridinium chloro-

chromate (43 mg, 0.2 mmoles) in 1 mL of dichloromethane at room 
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temperature. After the suspension was stirred at ambient temperature 

for 5 h, it was diluted with ether and filtered through Florisil. 

Concentration of the filtrate afforded 23 mg (50%) of diketone 1^ as 

a colorless oil: IR (film) 2975, 2930, 2860, 1777, 1743, 1460, 1255, 

1090, 840, 775 cm'^; 100 MHz NMR (CDCI3) 6 0.06 (s, 6 H), 0.93 (s, 9 

H), 1.30 (s, 3 H), 1.66 (br s, 3 H), 1.8-2.1 (m, 4 H), 2.30 (d, J = 

20 Hz, 1 H), 3.54 (br s, 1 H), 3.66 (br s, 2 H), 3.86 (d, J = 20 Hz, 

1 H),'4.40 (d, J = 6 Hz, 1 H), 5.51 (m, 1 H); 90 MHz C-13 NMR (CDCI3) 

6 -5.786, 13.787, 18.076, 21.328, 23.085, 25.817, 27.898, 29.653, 

50.202, 50.658, 63.273, 69.256, 77.385, 118.094, 141.570, 207.577, 

209.983. 
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OVERALL SUMMARY 

Part I describes the successful total synthesis of the antifungal 

antibiotic kalafungiii and a close analogue, 9-deoxykalafungin. The key 

step, in which all of the carbon atoms present in the target molecules 

were assembled, is the addition of 2-tert-butoxyfuran to either 2-

acetyl-1,4-naphthoquinone or 2-acetyl-8-methoxy-l,4-naphthoquinone. 

Hydride reduction followed by removal of the tert-butyl protecting group 

and addition of the C-1 alcohol to the unmasked butenolide afforded 

intermediate naphthydroquinone dimethyl ethers, which were oxidized to 

the target molecules with argentic oxide. 

Part II describes the first successful total synthesis of the 

trichothec-9-ene skeleton containing oxygenation at both carbon-15 and 

in the C-ring. The four asymmetric centers present were introduced 

unambiguously with the correct relative configuration. The synthesis 

began with a Lewis acid catalyzed Diels-Alder reaction between 1-acetoxy-

3-methyl butadiene and 3-hydroxymethyl-3-buten-2-one. The major product 

from this reaction had the desired stereochemistry at carbons 6 and 11, 

resulting from cis-endo addition. The thermal reaction afforded the 

diastereomeric acetoxyketone as the major product. The adduct from the 

former reaction was transformed to a bicyclic lactone by an intramolecular 

Knoevenagel condensation. This lactone could be converted into the 

desired keto-alcohol by reduction of the lactone and nitrile followed by 

an oxidation and Curtius degradation. Desilylation furnished an alcohol, 

which was reprotected as the bromoacetate. The third asymmetric center 
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was introduced via an intramolecular alkylation of the regiodefined 

silyl enol ether of the ketone with the proximate haloester. The 

6-lactone produced was transformed to an aldehyde, which underwent intra

molecular aldolization to introduce the final asymmetric center. 

Oxidation of the resulting ketol afforded 15-tert-butyldimethyl -

silyloxy-13-nortrichothec-9-ene-3,12-dione. 
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